Cho hai điểm A, B thuộc đồ thị hàm số y=sinxtrên đoạn \(\left[ {0;\pi } \right]\), các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và \(CD = \frac{{2\pi }}{3}.\) Độ dài của cạnh BC bằng
lượt xem
Có 5 học sinh không quen biết nhau cùng đến một cửa hàng kem có 6 quầy phục vụ. Xác suất để có 3 học sinh cùng vào 1 quầy và 2 học sinh còn lại vào 1 quầy khác là:
lượt xem
Cho số phức z có biểu diễn hình học là điểm M ở hình vẽ bên. Khẳng định nào sau đây đúng ?
lượt xem
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2x + y + mz - 2 = 0\) và
\(\left( Q \right):x + ny + 2z + 8 = 0\) song với nhau. Giá trị của m và n lần lượt là :
lượt xem
Cho dãy số (un) gồm 89 số hạng thỏa mãn \({u_n} = {n^0}{\rm{ }}\forall n \in N,1 \le n \le 89.\) Gọi P là tích của tất cả 89 số hạng của dãy số. Giá trị của biểu thức logP là
lượt xem
Cho các số thực a, b. Giá trị của biểu thức \(A = {\log _2}\frac{1}{{{2^a}}} + {\log _2}\frac{1}{{{2^b}}}\) bằng giá trị của biểu thức nào trong các biểu thức sau đây?
lượt xem
Trong không gian Oxyz, cho điểm A(1; 2; 2) Các số a, b khác 0 thỏa mãn khoảng cách từ A đến mặt phẳng (P): ay + bz = 0 bằng \(2\sqrt 2 \) . Khẳng định nào sau đây là đúng?
lượt xem
Cho hàm số y=f(x) có đạo hàm liên tục trên R, hàm số \(y = f'\left( {x - 2} \right)\) có đồ thị hàm số như hình bên. Số điểm cực trị của hàm số y=f(x) là :
lượt xem
lượt xem
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 3)và hai mặt phẳng \(\left( P \right):2x + 3y = 0\) và \(\left( Q \right):3x + 4y = 0.\) Đường thẳng qua A song song với hai mặt phẳng (P); (Q) có phương trình tham số là:
lượt xem
Cho hình lăng trụ đều ABC.A’B’C’có tất cả các cạnh bằng a (tham khảo hình vẽ bên). Gọi M là trung điểm của cạnh BC. Khoảng cách giữa hai đường thẳng AM và B’C là:
lượt xem
Trong các hàm số sau, hàm số nào không phải là nguyên hàm của hàm \(f\left( x \right) = {x^3}?\)
lượt xem
Cho hai dãy ghế được xếp như sau :
lượt xem
Cho hàm số \(y = \frac{{x + 1}}{{x - 1}}.\) M và N là hai điểm thuộc đồ thị hàm số sao cho tiếp tuyến của đồ thị hàm số tại M và N song song với nhau. Khẳng định nào sau đây là SAI?
lượt xem
Trong không gian tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}.\) Véc tơ nào trong các véc tơ sau đây không là véc tơ chỉ phương của đường thẳng d?
lượt xem
Cho hàm số y=f(x) có đạo hàm \(f'\left( 6 \right) = 2.\) thỏa mãn Giá trị biểu thức \(\mathop {\lim }\limits_{x \to 6} \frac{{f\left( x \right) - f\left( 6 \right)}}{{x - 6}}\) bằng
lượt xem
Cho phương trình \({4^{\left| x \right|}} - \left( {m + 1} \right){2^{\left| x \right|}} + m = 0.\) Điều kiện của m để phương trình có đúng 3 nghiệm phân biệt là:
lượt xem
Cho số dương a và hàm số y=f(x) liên tục trên R thỏa mãn \(f\left( x \right) + f\left( { - x} \right) = a\,\,\forall x \in R\). Giá trị của biểu thức \(\int\limits_{ - a}^a {f\left( x \right)dx} \) bằng
lượt xem
Một hình trụ có chiều cao bằng 6cm và diện tích đáy bằng 4cm2. Thể tích của khối trụ bằng:
lượt xem
Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sin x}}{x}\) là:
lượt xem
Cho hàm số y=f(x) liên tục trên R thỏa mãn \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0;\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1.\)Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là:
lượt xem
Một người gửi tiết kiệm với lãi suất 5% một năm và lãi hàng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền lớn hơn 150% số tiền gửi ban đầu?
lượt xem
Tập nghiệm của bất phương trình \({\log _{0,5}}x > {\log _{0,5}}2\) là:
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD) . Thể tích của khối chóp S.ABCD
là:
lượt xem
Cho hàm số y=f(x) có đồ thị như hình vẽ bên.
Khẳng định nào sau đây là đúng?
lượt xem
Cho hình trụ có bán kính đáy bằng a và chiều cao bằng 2a. Một hình nón có đáy trùng với một đáy của hình trụ và đỉnh trùng với tâm đường tròn thứ hai của hình trụ. Độ dài đường sinh của hình nón là
lượt xem
lượt xem
Cho hai số thực \(x \ne 0,y \ne 0\) thay đổi và thỏa mãn điều kiện \(\left( {x + y} \right)xy = {x^2} + {y^2} - xy.\) Giá trị lớn nhất của biểu thức \(M = \frac{1}{{{x^3}}} + \frac{1}{{{y^3}}}\) là
lượt xem
Cho các số thực a, b, c thỏa mãn \(\left\{ \begin{array}{l} a + c > b + 1\\ a + b + b + 1 < 0 \end{array} \right..\) Tìm số giao điểm của đồ thị hàm số \(y = {x^3} + a{x^2} + bx + c\) và trục Ox.
lượt xem
Cho hàm số \(y = {x^4} - 2\left( {1 - {m^2}} \right){x^2} + m + 1.\) Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất.
lượt xem
lượt xem
Cho \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 3y} \right).\) Tính giá trị \(\frac{x}{y}\)
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {1;2;3} \right),B\left( {3;4;4} \right),C\left( {2;6;6;} \right)\) và \(I\left( {a;b;c} \right)\) là tâm đường tròn ngoại tiếp tam giác ABC. Tính \(S = a + b + c\)
lượt xem
Một nhà máy cần sản suất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?
lượt xem
Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.
lượt xem
lượt xem
Cho f(x)là hàm số liên tục trên R và thỏa mãn điều kiện \(\int\limits_0^1 {f\left( x \right)dx} = 4,\int\limits_0^3 {f\left( x \right)dx} = 6.\) Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x + 1} \right|} \right)dx} \)
lượt xem
Cho hàm số y = f(x) có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {{x^2} - 3} \right)\left( {{x^4} - 1} \right)\) liên tục trên RTính số điểm cực trị của hàm số y = f(x)
lượt xem
lượt xem
lượt xem
lượt xem
Cho số phức \(z = - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i.\) Tìm số phức \({\rm{w}} = 1 + z + {z^2}\)
lượt xem
Tính \(\lim n\left( {\sqrt {4{n^2} + 3} - \sqrt[3]{{8{n^3} + n}}} \right)\)
lượt xem
Tìm tất cả các giá trị của m để hàm số \(y = {2^{\frac{{mx + 1}}{{x + m}}}}\) nghịch biến trên \(\left( {\frac{1}{2}; + \infty } \right)\)
lượt xem
Giải phương trình \(c{\rm{os}}3x.\tan 4x = \sin 5x\)
lượt xem
Tìm phần thực của số phức \(z_1^2 + z_2^2,\) biết rằng \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 4z + 5 = 0\)
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB là tam giác đều nằm trong mặt phẳng tạo với đáy một góc \(60^o\) Tính thể tích khối chóp S.ABCD
lượt xem
Tìm m để hàm số \(y = {x^3} - 3m{x^2} + 3\left( {2m - 1} \right)x + 1\) đồng biến trên R
lượt xem
.png)