Cho hàm số \(f(x)\) liên tục trên \(\left[ {a; + \infty } \right)\) với \(a>0\) và thỏa \(\int\limits_a^x {\frac{{f\left( t \right)}}{{{t^2}}}{\rm{d}}t} + 6 = 2\sqrt x \) với mọi \(x>a\) Tính \(f(4)\).
lượt xem
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\) và thỏa \(\int\limits_0^{{x^2}} {f\left( t \right){\rm{d}}t} = x.\sin \left( {\pi x} \right)\). Tính \(f\left( {\frac{1}{4}} \right)\).
lượt xem
lượt xem
lượt xem
Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa \(2f\left( x \right) + 3f\left( {1 - x} \right) = \sqrt {1 - {x^2}} .\) Giá trị của tích phân \(\int\limits_0^1 {f'\left( x \right){\rm{d}}x} \) bằng
lượt xem
Cho hàm số \(f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), (với \(m,n,p,q,r \in R\)). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên dưới:
Tập nghiệm của phương trình \(f\left( x \right) = r\) có số phần tử là
lượt xem
lượt xem
Cho hàm số \(f(x)\) có bảng xét dấu của đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 2} \right) - {x^3} + 3x\) đồng biến trên khoảng nào dưới đây?
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Cho hàm số \(y=f(x)\) liên tục trên \(R\) và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {\sin x} \right) = m\) có nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) là
lượt xem
Có bao nhiêu số phức \(z\) thỏa mãn \(\left| {z - 1 - i} \right| = \left| {z - 3 + 3i} \right|\) và \(\left| {z - 1 - i} \right| = \left| {z - 3 + 3i} \right|\)?
lượt xem
lượt xem
Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng
lượt xem
Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có bảng biến thiên như sau
Bất phương trình \(f\left( x \right) < {{\rm{e}}^x} + m\) đúng với mọi \(x \in \left( { - 1;1} \right)\) khi và chỉ khi
lượt xem
Cho \(\int\limits_0^1 {\frac{{x{\rm{d}}x}}{{{{\left( {x + 2} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a, b, c\) là các số hữu tỷ. Giá trị của \(3a+b+c\) bằng
lượt xem
Xét các số phức \(z\) thỏa mãn \(\left( {z + 2i} \right)\left( {\overline z + 2} \right)\) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biễu diễn của \(z\) là một đường tròn, tâm của đường tròn đó có tọa độ là
lượt xem
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {4m - 9} \right)x + 4\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\) là
lượt xem
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \(\left( P \right)\,:\,\,x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}\). Hình chiếu của \(d\) trên \((P)\) có phương trình là
lượt xem
Cho hình chóp \(S,ABCD\) có đáy là hình thoi cạnh \(a\), \(\widehat {BAD} = 60^0\), \(SA=a\) và \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \((SCD\) bằng
lượt xem
Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là
lượt xem
lượt xem
Tổng tất cả các nghiệm của phương trình \({\log _3}\left( {7 - {3^x}} \right) = 2 - x\) bằng
lượt xem
Cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai mặt phẳng \((A'B'CD)\) và \((ABC'D')\) bằng
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên sau
Số nghiệm của phương trình \(2f\left( x \right) + 3 = 0\) là
lượt xem
Hàm số \(f\left( x \right) = {\log _2}\left( {{x^2} - 2x} \right)\) có đạo hàm
lượt xem
Cho khối chóp tứ giác đều có tất cả các cạnh bằng \(2a\). Thể tích của khối chóp đã cho bằng
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
lượt xem
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Thể tích của khối nón đã cho bằng
lượt xem
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
lượt xem
Tập nghiệm của bất phương trình \({3^{{x^2} - 2x}} < 27\) là
lượt xem
Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng \(\left( P \right):x + 2y + 2z - 10 = 0\) và \(\left( Q \right):x + 2y + 2z - 3 = 0\) bằng
lượt xem
Kí hiệu \(z_1, z_2\) là hai nghiệm phức của phương trình \({z^2} - 3{\rm{z}} + 5 = 0\). Giá trị của \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
lượt xem
Đặt \(a = {\log _3}2\), khi đó \({\log _{16}}27\) bằng
lượt xem
Trong không gian Oxyz, cho hai điểm \(I\left( {1;1;1} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình của mặt cầu có tâm \(I\) và đi qua điểm \(A\) là
lượt xem
Tìm các số thực \(a\) và \(b\) thỏa mãn \(2a + \left( {b + i} \right)i = 1 + 2i\) với \(i\) là đơn vị ảo.
lượt xem
Cho hàm số \(f(x)\)( có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^3},\forall x \in R\). Số điểm cực trị của hàm số đã cho là
lượt xem
Cho hàm số \(y=f(x)\) liên tục trên đoạn \([-1;3]\) và có đồ thị như hình bên. Gọi \(M\)và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \([-1;3]\). Giá trị của \(M-m\) bằng
lượt xem
Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào dưới đây?
lượt xem
Điểm nào trong hình vẽ bên dưới là điểm biểu diễn số phức \(z = - 1 + 2i\)?
lượt xem
Cho cấp số cộng \((u_n)\) có số hạng đầu \(u_1=2\) và công sai \(d=5\). Giá trị của \(u_4\) bằng
lượt xem
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\), mệnh đề nào dưới đây đúng?
lượt xem
Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{2}\) đi qua điểm nào sau đây?
lượt xem
Họ nguyên hàm của hàm số \(f\left( x \right) = {{\rm{e}}^x} + x\)
lượt xem
Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là
lượt xem
Tập nghiệm của phương trình \({\log _2}\left( {{x^2} - x + 2} \right) = 1\) là
lượt xem
Thể tích khối cầu bán kính \(a\) bằng
lượt xem