Cho hàm số \(y = \frac{{{x^2} + x + 2}}{{x - 2m - 1}}\) có đồ thị (1). Tìm \(m\) để đồ thị (1) có đường tiệm cận đứng trùng với đường thẳng \(x=3\)
lượt xem
Một vật rơi tự do với phương trình chuyển động \(S = \frac{1}{2}g{t^2}\), trong đó \(g = 9,8m/{s^2}\) và t tính bằng giây (s). Vận tốc của vật tại thời điểm \(t=5 s\) bằng
lượt xem
lượt xem
Tìm số \(m\) để đồ thị hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}\) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 với O là gốc tọa độ.
lượt xem
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y = \left( {2m - 1} \right)x + 3 + m\) vuông góc với đường thẳng đi qua hai điểm cực trị của hàm số \(y = {x^3} - 3{x^2} + 1\).
lượt xem
lượt xem
Biết \(M\left( {0;2} \right)\), \(N\left( {2; - 2} \right)\) là các điểm cực trị của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\). Tính giá trị của hàm số tại \(x = - 2\).
lượt xem
Cho hàm số \(y = \left( {x - 1} \right){\left( {x + 2} \right)^2}\). Trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số nằm trên đường thẳng nào dưới đây?
lượt xem
Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên R biết \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\). Khẳng định nào sau đây đúng.
lượt xem
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{x}{{x - m}}\) nghịch biến trên nửa khoảng \(\left[ {1; + \infty } \right)\).
lượt xem
Giá trị nhỏ nhất của hàm số \(y = \frac{{1 - x}}{{2x - 3}}\) trên đoạn \(\left[ {0;2} \right]\) là \(m\). Giá trị của \(m^2\) bằng
lượt xem
Tìm điểm M thuộc đồ thị \(\left( C \right):y = {x^3} - 3{x^2} - 2\) biết hệ số góc của tiếp tuyến tại M bằng 9
lượt xem
Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của chúng
lượt xem
Phương trình tiếp tuyến với đồ thị \(y = {x^3} - 4{x^2} + 2\) tại điểm có hoành độ bằng 1 là:
lượt xem
Phương trình tiếp tuyến với đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) tại giao điểm của nó với trục tung là:
lượt xem
Số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{{x^2} - 1}}\) là
lượt xem
Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;2} \right]\) bằng 7
lượt xem
Đồ thị hàm số nào sau đây có đường tiệm cận đứng là \(x = 1\)
lượt xem
Điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2\) là:
lượt xem
Tìm m để hàm số \(y = \sin x - mx\) nghịch biến trên R
lượt xem
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình bên. Đồ thị bên là đồ thị của hàm số nào sau đây:
lượt xem
Giá trị cực đại của hàm số \(y = {x^3} - 3x + 4\) là
lượt xem
Tìm m để hàm số \(y = {x^3} + 3{x^2} + 3mx - 1\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)
lượt xem
Tìm \(m\) để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại \(x=2\)
lượt xem
Hàm số \(y = \frac{{{x^2} - 3x + 3}}{{x - 2}}\) đạt cực đại tại:
lượt xem
Khoảng đồng biến của hàm số \(y = - {x^4} + 8{x^2} - 1\) là:
lượt xem
Cho hàm số \(y = - {x^4} + 2{x^2} - 3\) có đồ thị (C). Phương trình tiếp tuyến với đồ thị (C) tại điểm cực đại là:
lượt xem
Cho hàm số \(y = 2{x^3} - 3\left( {3m - 1} \right){x^2} + 6\left( {2{m^2} - m} \right)x + 3\). Tìm \(m\) để hàm số nghịch biến trên đoạn có độ dài bằng 4.
lượt xem
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) đồng biến trên R
lượt xem
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) nghịch biến trên khoảng có độ dài bằng 2.
lượt xem
Hàm số \(y = {\sin ^4}x - {\cos ^4}x\) có đạo hàm là:
lượt xem
Tìm \(m\) để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng.
lượt xem
Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai:
lượt xem
Tiếp tuyến với đồ thị hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) tại điểm có hoành độ bằng 0 cắt hai trục tọa độ lần lượt tại A và B. Diện tích tam giác OAB bằng:
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Giá trị lớn nhất của hàm số này trên đoạn \(\left[ { - 1;2} \right]\) bằng:
lượt xem
Gọi \(a\) là một nghiệm của phương trình \({\left( {26 + 15\sqrt 3 } \right)^x} + 2{\left( {7 + 4\sqrt 3 } \right)^x} - 2{\left( {2 - \sqrt 3 } \right)^x} = 1\). Khi đó giá trị của biểu thức nào sau đây là đúng?
lượt xem
Tính giá trị của biểu thức \(P = \log \left( {\tan 1^\circ } \right) + \log \left( {\tan 2^\circ } \right) + \log \left( {\tan 3^\circ } \right) + ... + \log \left( {\tan 89^\circ } \right)\).
lượt xem
Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị (C). Trong các tiếp tuyến của (C), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là
lượt xem
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{{m\ln x - 2}}{{\ln x - m - 1}}\) nghịch biến trên \(\left( {{e^2}; + \infty } \right)\).
lượt xem
Số các giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm phân biệt là:
lượt xem
Tìm các giá trị thực của tham số \(m\) để bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\) có nghiệm với mọi \(x \in \left( { - \infty ;0} \right)\).
lượt xem
Gọi \(x, y\) là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với \(a, b\) là hai số nguyên dương. Tính \(a+b\).
lượt xem
lượt xem
Chọn ngẫu nhiên một số tự nhiên A có bốn chữ số. Gọi N là số thỏa mãn \(3^N=A\). Xác suất để N là số tự nhiên bằng:
lượt xem
Cho \(f\left( x \right) = {2.3^{{{\log }_{81}}x}} + 3\). Tính \(f'(1)\).
lượt xem
Tích các nghiệm của phương trình \({\log _{\frac{1}{{\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) = - 2\) bằng
lượt xem
Tìm tất cả các giá trị của tham số \(a\) để phương trình sau có nghiệm duy nhất \({\log _3}{x^2} + a\sqrt {{{\log }_3}{x^3}} + a + 1 = 0\).
lượt xem
Tính tổng tất cả các nghiệm của phương trình sau \({3^{2x + 8}} - {4.3^{x + 5}} + 27 = 0\).
lượt xem
Cho \({\log _6}45 = a + \frac{{{{\log }_2}5 + b}}{{{{\log }_2}3 + c}}\) với \(a,b,c \in Z\). Tính tổng \(a+b+c\)?
lượt xem
Cho hàm số \(y=a^x\) với \(0 < a \ne 1\) có đồ thị (C). Chọn khẳng định sai?
lượt xem