Một vật chuyển động theo quy luật \(s = - \frac{1}{3}{t^3} + 9{t^2}\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được là bao nhiêu?
A. \(216\left( {m/s} \right)\)
B. \(30\left( {m/s} \right)\)
C. \(81\left( {m/s} \right)\)
D. \(54\left( {m/s} \right)\)
Lời giải của giáo viên
ToanVN.com
Ta có \(v\left( t \right) = s'\left( t \right) = - {t^2} + 18t \Rightarrow v'\left( t \right) = - 2t + 18;\left\{ \begin{array}{l}
t \in \left( {0;10} \right)\\
v'\left( t \right) = 0
\end{array} \right. \Leftrightarrow t = 9\)
Tính được \(v\left( 0 \right) = 0;v\left( {10} \right) = 80;v\left( 9 \right) = 81\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm điểm M thuộc đồ thị \(\left( C \right):y = {x^3} - 3{x^2} - 2\) biết hệ số góc của tiếp tuyến tại M bằng 9
Gọi S là tập tất cả các giá trị thực của tham số \(m\) để đồ thị của hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x\) có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng \(y = 5x - 9\). Tính tổng tất cả các phần tử của S.
Cho hàm số \(y = \frac{{3x + 2}}{{x + 2}}\) có đồ thị (C) có hai điểm phân biệt P, Q tổng khoảng cách từ P hoặc Q tới hai tiệm cận là nhỏ nhất. Khi đó \(P{Q^2}\) bằng:
Hàm số \(y = {\sin ^4}x - {\cos ^4}x\) có đạo hàm là:
Tìm \(m\) để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại \(x=2\)
Cho hàm số \(y = \frac{{{x^2} + x + 2}}{{x - 2m - 1}}\) có đồ thị (1). Tìm \(m\) để đồ thị (1) có đường tiệm cận đứng trùng với đường thẳng \(x=3\)
Tìm m để hàm số \(y = {x^3} + 3{x^2} + 3mx - 1\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)
Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai:
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) nghịch biến trên khoảng có độ dài bằng 2.
Phương trình tiếp tuyến với đồ thị \(y = {x^3} - 4{x^2} + 2\) tại điểm có hoành độ bằng 1 là:
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) đồng biến trên R
Khoảng đồng biến của hàm số \(y = - {x^4} + 8{x^2} - 1\) là:
Điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2\) là:
Tìm \(m\) để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng.
Biết \(M\left( {0;2} \right)\), \(N\left( {2; - 2} \right)\) là các điểm cực trị của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\). Tính giá trị của hàm số tại \(x = - 2\).


