Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng \((P): x + 2y + 2z - 10 = 0\) và \(\left( Q \right):x + 2y + 2z - 3 = 0\) bằng:
lượt xem
lượt xem
Cho \(\int\limits_0^1 {\frac{{d{\rm{x}}}}{{\sqrt {x + 2} + \sqrt {x + 1} }}} = a\sqrt b - \frac{8}{3}\sqrt a + \frac{2}{3}\left( {a,b \in {R^*}} \right).\) Tính \(a + 2b\)?
lượt xem
Cho khối trụ có độ dài đường sinh bằng a và bán kính đáy bằng R. Tính thể tích của khối trụ đã cho?
lượt xem
Cho chuyển động thẳng xác định bởi phương trình \(s(t) = {t^3} - 3{t^2} - \frac{2}{5}t + 3\), (thời gian tính bằng giây, quãng đường tính bằng m). Khẳng định nào sau đây đúng
lượt xem
Cho khối tứ diện ABCD có BC = 3, CD = 4 và \(\widehat {ABC} = \widehat {BCD} = \widehat {ADC} = {90^0}.\) Góc giữa hai đường thẳng AD và BC bằng \(60^0\). Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng:
lượt xem
Hình nón có thiết diện qua trục là một tam giác đều cạnh 2a, diện tích toàn phần là S1 và mặt cầu có đường kính bằng chiều cao hình nón, có diện tích S2. Khẳng định đúng là:
lượt xem
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2, diện tích tam giác A’BC bằng 3. Tính thể tích của khối lăng trụ:
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( {1;2; - 1} \right),B\left( {2;1;1} \right),C\left( {0;1;2} \right).\) Gọi điểm \(H\left( {x;y;z} \right)\) là trực tâm tam giác ABC. Giá trị của \(S = x + y + z\) là:
lượt xem
Cho khối tứ diện ABCD có AB, AC', AD đôi một vuông góc với nhau và \(AB = a,AC = 2a,AD = 3a.\) Các điểm M, N, P thứ tự thuộc các cạnh AB, AC, AD sao cho \(2AM = MB,AN = 2NC,AP = PD.\) Tính thể tích khối tứ diện AMNP ?
lượt xem
Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AB sao cho 3MB=2MA và N là trung điểm của cạnh CD. Lấy G là trọng tâm của tam giác ACD. Đường thẳng MG cắt mặt phẳng (BCD) tại điểm P. Khi đó tỷ số \(\frac{{PB}}{{PN}}\) bằng:
lượt xem
lượt xem
Cho dãy số \((a_n)\) thỏa mãn \(a_1=1\) và \({5^{{a_{n + 1}} - {a_n}}} - 1 = \frac{3}{{3n + 2}}\), với mọi \(n \ge 1\). Tìm số nguyên dương \(n>1\) nhỏ nhất để là một số nguyên.
lượt xem
Đồ thị sau đây của hàm số nào?
.png)
lượt xem
Biết tập nghiệm S của bất phương trình \({\log _{\frac{\pi }{6}}}\left[ {{{\log }_3}\left( {x - 2} \right)} \right] > 0\) là khoảng (a;b). Tính \(b-a\)
lượt xem
Tìm tập xác định của hàm số \(y = \sqrt {2{x^2} - 5x + 2} .\)
lượt xem
Cho hàm số \(y = {x^4} - 2m{x^2} + {m^4} + 2m\). Tìm tất cả các giá trị của m để các điểm cực trị của đồ thị hàm số lập thành một tam giác đều.
lượt xem
Tìm tập xác định D của hàm số \({\rm{y}} = {\log _3}({{\rm{x}}^2} - 6{\rm{x}} + 8)\).
lượt xem
Cho hàm số \(y = \frac{{ax + 1}}{{bx - 2}}.\) Tìm a, b để đồ thị hàm số có x = 1 à tiệm cận đứng và \(y = \frac{1}{2}\) là tiệm cận ngang.
lượt xem
lượt xem
Cho hình phẳng (S) giới hạn bởi đường cong có phương trình \(y = \sqrt {2 - {x^2}} \) và trục Ox, quay (S) xung quanh Ox. Thể tích của khối tròn xoay được tạo thành bằng:
lượt xem
Số nghiệm nguyên của phương trình x² – 4x + 5 = |3x – 7| là:
lượt xem
lượt xem
Cho \(F(x)\) là nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) và \(F\left( {\frac{\pi }{4}} \right) = 1.\) Tính \(F\left( {\frac{\pi }{6}} \right)?\)
lượt xem
Cho khối chóp tứ giác đều có tất cả các cạnh bằng 2a. Thể tích của khối chóp đã cho bằng:
lượt xem
Tính tích phân \(I = \int\limits_1^5 {\frac{{dx}}{{x\sqrt {3x + 1} }}} \) ta được kết quả \(I = a\ln 3 + b\ln 5.\) Giá trị \(S = {a^2} + ab + 3{b^2}\) là:
lượt xem
Tập xác định của hàm số \(y = \frac{{6 - \tan x}}{{5\sin x}}\) là:
lượt xem
Cho hàm số \(y = {x^4} - 2{x^2} - 3\) có đồ thị hàm số như hình bên dưới. Tìm tất cả các giá trị của tham số m để phương trình \({x^4} - 2{x^2} - 3 - 2m = 0\) có hai nghiệm phân biệt?
.png)
lượt xem
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số \(y = {\left| x \right|^3} - (2m + 1){x^2} + 3m\left| x \right| - 5\) có 3 điểm cực trị.
lượt xem
Cho hàm số \(y = {x^3} - 6{x^2} + 9x\) có đồ thị như Hình 1. Đồ thị Hình 2 là đồ thị của hàm số nào dưới đây?
.png)
.png)
lượt xem
Hệ số của số hạng chứa \(x^3\) trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^9}\) (với \(x \ne 0)\) bằng
lượt xem
Cho mặt cầu (S) có diện tích \(4\pi {a^2}\left( {c{m^2}} \right).\) Khi đó, thể tích khối cầu (S) là:
lượt xem
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D; SD vuông góc với mặt đáy \(\left( {ABCD} \right);{\rm{ }}AD = 2a;{\rm{ }}SD = a\sqrt 2 .\) Tính khoảng cách giữa đường thẳng CD và mặt phẳng (SAB).
lượt xem
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(\left( H \right):y = \frac{{x - 1}}{{x + 1}}\) và các trục tọa độ. Khi đó giá trị của S bằng:
lượt xem
Với giá trị nào của tham số m để phương trình \({4^x} - m{.2^{x + 1}} + 2m + 3 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 4\)
lượt xem
Tính đạo hàm của hàm số \(y = \left( {{x^2} - 2x + 2} \right){e^x}.\)
lượt xem
Cho hàm số \(y=f(x)\) xác định và liên tục trên đoạn [a;b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\) trục hoành và hai đường thẳng \(x=a, x=b\) được tính theo công thức:
lượt xem
Tổng các nghiệm thuộc khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) của phương trình \(4{\sin ^2}2x - 1 = 0\) bằng:
lượt xem
Cho hàm số \(y=f(x)\) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1.\) Khẳng định nào sau đây là đúng?
lượt xem
Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần \(S_{tp}\) của hình trụ đó.
lượt xem
Cho hàm số \(y = {x^3} - 3x + 1\) có đồ thị (C) Tiếp tuyến với (C) tại giao điểm của (C) với trục tung có phương trình là:
lượt xem
Cho các số thực \(a, b>1\) thỏa mãn điều kiện \(lo{g_2}a + {\log _3}b = 1\). Tìm giá trị lớn nhất của biểu thức $P = \sqrt {lo{g_3}a} + \sqrt {{{\log }_2}b} .\)
lượt xem
Có bao nhiêu giá trị nguyên của tham số m trên \(\left[ { - 1;5} \right]\) để hàm số \(y = \frac{1}{3}{x^3} - {x^2} + mx + 1\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)?\)
lượt xem
Cho tam giác ABC có: A(4;3); B(2;7); C(–3;–8). Toạ độ chân đường cao kẻ từ đỉnh A xuống cạnh BC là:
lượt xem
Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {x - 1} \right)\sin 2xdx.} \) Tìm đẳng thức đúng?
lượt xem
Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là
lượt xem
Cho hàm số \(f(x)\) thỏa mãn \(f\left( 1 \right) = 2\) và \({({x^2} + 1)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}({x^2} - 1)\) với mọi \(x \in R\). Giá trị của \(f(2)\) bằng
lượt xem
Cho khối lập phương ABCD.A'B'C'D' cạnh \(a\). Các điểm M, N lần lượt di động trên các tia AC, B'D'sao cho \(AM + B'N = a\sqrt 2 \).Thể tích khối tứ diện AMNB' có giá trị lớn nhất là :
lượt xem
lượt xem