lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, trên cạnh SA lấy điểm M và đặt \(\frac{{SM}}{{SA}} = x\). Giá trị x để mặt phẳng (MBC) chia khối chóp đã cho thành hai phần có thể tích bằng nhau là
lượt xem
Cho S là tập hợp các số tự nhiên từ 1 đến 100. Chọn ngẫu nhiên độc lập hai số a và b thuộc tập hợp S (với mỗi phần tử của tập S có khả năng lựa chọn như nhau). Xác suất để số \(x = {3^a} + {3^b}\) chia hết cho 5 bằng
lượt xem
Cho \(\int\limits_0^1 {{{\left( {\frac{{2x + 1}}{{x + 1}}} \right)}^2}} dx = a + b\ln 2\) với \(a, b\) là các số hữu tỉ. Giá trị của \(2a+b\) bằng
lượt xem
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc tọa độ O, các đỉnh B(a;0;0), D(0;a;0), A'(0;0;b) với a, b > 0 và a + b = 2. Gọi M là trung điểm của cạnh CC'.Thể tích của khối tứ diện BDA'M có giá trị lớn nhất bằng
lượt xem
lượt xem
Cho một khối lập phương có thể tích \(V_1\) và một khối hình hộp có tất cả các cạnh bằng nhau và có thể tích \(V_2\). Biết rằng cạnh của khối lập phương bằng cạnh của khối hình hộp. Mệnh đề nào dưới đây đúng ?
lượt xem
Cho hai số thực dương a và b thỏa mãn \({\log _9}{a^4} + {\log _3}b = 8\) và \({\log _3}a + {\log _{\sqrt[3]{3}}}b = 9\). Giá trị biểu thức \(P = ab + 1\) bằng
lượt xem
lượt xem
Cho khối lăng trụ ABC.A'B'C' tam giác A'BC có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A'BC) bằng 2. Thể tích khối lăng trụ đã cho bằng
lượt xem
Trong không gian Oxyz, cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy. Cho biết B(2;3;7), D(4;1;3). Lập phương trình mặt phẳng (SAC) .
lượt xem
Gọi S là tập hợp các tham số nguyên a thỏa mãn \(\lim \left( {\frac{{3n + 2}}{{n + 2}} + {a^2} - 4a} \right) = 0.\) Tổng các phần tử của S bằng
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và \(SA = a\sqrt 3 \). Gọi a là góc giữa SD và mặt phẳng (SAC). Giá trị \(\sin \alpha \) bằng
lượt xem
Biết rằng đồ thị hàm số \(y = {x^4} - 2a{x^2} + b\) có một điểm cực trị là (1;2). Khi đó khoảng cách giữa điểm cực đại và điểm cực tiểu của đồ thị hàm số đã cho bằng
lượt xem
Cho hàm số \(y=f(x)\) liên tục trên R và \(\int\limits_3^5 {f(x)dx} = 12\). Giá trị tích phân \(I = \int\limits_1^2 {f(2x + 1)dx} \) bằng
lượt xem
lượt xem
lượt xem
Cho hàm số \(y = \frac{1}{{x + 1 + \ln x}}\) với x > 0. Khi đó \( - \frac{{y'}}{{{y^2}}}\) bằng
lượt xem
lượt xem
lượt xem
Cho khối tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và \(OA = 2OB = 3OC = 3a\).Thể tích của khối tứ diện đã cho bằng
lượt xem
Tìm tất cả các giá trị thực m thỏa mãn \(\int\limits_0^m {(2x + 1)dx} < 2\).
lượt xem
Trong không gian Oxyz, cho điểm A(1;1;-1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:
lượt xem
Thể tích của khối chóp tứ giác đều có tất cả các cạnh bằng \(a\) là
lượt xem
Một hình hộp chữ nhật có ba kích thước là \(a, b, c\). Thể tích V của khối hộp chữ nhật đó là
lượt xem
Với \(a\) và \(b\) là hai số thực dương. Khi đó \(\log \left( {{a^2}b} \right)\) bằng
lượt xem
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây ?
.png)
lượt xem
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + 3\) trên đoạn [1;3]. Giá trị \(T = 2M + m\) bằng
lượt xem
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y\, = \,\frac{{3x + 2019}}{{x + 2}}\) ?
lượt xem
Đồ thị của hàm số \(y = {x^4} + 3{x^2} - 4\) cắt trục hoành tại bao nhiêu điểm ?
lượt xem
Gọi S là diện tích của hình phẳng giới hạn bởi các đường \(y = {3^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng ?
lượt xem
Nếu \({a^{2x}} = 3\) thì \(3{a^{6x}}\) bằng
lượt xem
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau
.png)
Số nghiệm thực của phương trình \(3f(x) - 6 = 0\) là
lượt xem
Hàm số \(y = x{.2^x}\) có đạo hàm là
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z - 10 = 0\), mặt phẳng \(\left( P \right):x + 2y - 2z + 10 = 0\). Mệnh đề nào dưới đây đúng ?
lượt xem
Cho hàm số \(f(x)\) có \(f'\left( x \right) = \left( {x + 1} \right)\left( {x + 2} \right){\left( {x - 1} \right)^2}\), \(\forall x \in R\) . Số cực trị của hàm số đã cho là
lượt xem
Tập nghiệm của phương trình \({\log _2}\left( {{x^2} - 2x + 4} \right) = 2\) là
lượt xem
Họ các nguyên hàm của hàm số \(y = \cos x + x\) là
lượt xem
Cho cấp số cộng \((u_n)\) có \({u_4} = - 12\) và \({u_{14}} = 18\). Giá trị công sai d của cấp số cộng đó là
lượt xem
Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng: \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):x - y + z - 5 = 0\) có tọa độ là
lượt xem
Cho khối trụ có độ dài đường sinh bằng 2a và bán kính đáy bằng a. Thể tích của khối trụ đã cho bằng
lượt xem
Điểm cực đại của đồ thị hàm số \(y = {x^3} - 6{x^2} + 9x\) có tổng hoành độ và tung độ bằng
lượt xem
Bất phương trình \({\left( {\frac{1}{2}} \right)^{{x^2} - 2x}} \ge \frac{1}{8}\) có tập nghiệm là
lượt xem
Cho hàm số \(y = \frac{{3 - x}}{{2x - 1}}\). Mệnh đề nào dưới đây đúng ?
lượt xem
Trong không gian Oxyz, đường thẳng \(d:\left\{ \begin{array}{l}
x = 1 + 2t\\
y = 3 - t\\
z = 1 - t
\end{array} \right.\) đi qua điểm nào dưới đây ?
lượt xem
Cho lăng trụ đứng ABC.A’B’C’ có \(AC = a;BC = 2a,\angle ACB = 120^\circ \) . Gọi M là trung điểm của BB’. Tính khoảng cách giữa hai đường thẳng AM và CC’ theo a.
lượt xem
Cho hình lăng trụ ABC.A’B’C’, M là trung điểm của CC’. Mặt phẳng (ABM) chia khối lăng trụ thành hai khối đa diện. Gọi V1 là thể tích khối đa diện chứa đỉnh C và V2 là thể tích khối đa diện còn lại. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)
lượt xem
Cho hàm số \(f\left( x \right) = {e^{\frac{1}{3}{x^3} - \frac{3}{2}{x^2}}}\). Tìm mệnh đề đúng.
lượt xem
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
lượt xem
Cho hàm số \(y = {x^3} + 5x + 7\). Giá trị lớn nhất của hàm số trên đoạn [-5; 0] bằng bao nhiêu?
lượt xem