Cho khối lăng trụ đứng có đáy là tam giác vuông, độ dài hai cạnh góc vuông là 3a, 4a và chiều cao khối lăng trụ là 6a. Thể tích của khối lăng trụ bằng
lượt xem
Tìm họ nguyên hàm của hàm số f(x) = cos x.
lượt xem
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
lượt xem
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
lượt xem
Phương trình 43x-2 = 16 có nghiệm là
lượt xem
Cho cấp số cộng (un) có số hạng đầu u1 = 2 và công sai d = 3. Giá trị của u5 bằng
lượt xem
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
lượt xem
Có bao nhiêu số nguyên của m để phương trình \({\log _2}\left( {2x + m} \right) - 2{\log _2}x = {x^2} - 4{\rm{x}} - 2m - 1\) có 2 nghiệm thực phân biệt.
lượt xem
Cho lăng trụ ABC.A'B'C' có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 4. Gọi M, N và P lần lượt là tâm các mặt bên ABB'A', ACC'A' và BCC'B'. Thể tích của khối đa diện lồi có các đỉnh là các điểm A, B, C, M, N, P bằng
lượt xem
Cho phương trình log9x2 - log3(3x - 1) = -log3m (m là số thực). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm?
lượt xem
Cho hai số thực x, y thỏa mãn \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 3} \right) + y\left( {y - 3} \right) + xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = 5 - x - ({y^2} + xy - 3y)\).
lượt xem
Cho hàm số y = f(x) liên tục trên R có bảng biến thiên như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {\left| {2f\left( x \right) + m} \right|} \right) = 1\) có đúng 2 nghiệm trên [-1;1]?
lượt xem
Cho hàm số f(x) liên tục trên ℝ và thỏa mãn \(f\left( x \right) + 2f\left( {\pi - x} \right) = \left( {x + 1} \right)\sin x,\left( {\forall x \in R} \right)\). Tích phân \(\int\limits_0^\pi {f\left( x \right)d{\rm{x}}} \) bằng
lượt xem
lượt xem
Cho hàm số f(x) có bảng biến thiên như hình vẽ. Đồ thị hàm số có bao nhiêu tiệm cận?
lượt xem
Một người đầu tư một số tiền vào công ty theo thể thức lãi kép, kỳ hạn một năm với lãi suất 7,6%/năm. Giả sử lãi suất không đổi. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn và lãi) số tiền gấp 5 lần số tiền ban đầu?
lượt xem
Có bai nhiêu giá trị nguyên của tham số m để phương trình \({\cos ^3}x + {\left( {m - \sqrt 3 \sin x} \right)^3} - 2\cos \left( {x - \frac{{2\pi }}{3}} \right) + m = 0\) có nghiệm.
lượt xem
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A, AB = AC = b và có các cạnh bên bằng b. Khoảng cách giữa hai đường thẳng AB' và BC bằng
.png)
lượt xem
lượt xem
Trong không gian Oxyz, cho hai điểm A(1;2;0) và B(2;1;2). Phương trình tham số của đường thẳng AB là
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{2}\) và điểm A(-2;1;0). Viết phương trình mặt phẳng đi qua A và chứa d.
lượt xem
Số phức \(z = a + bi,\left( {a,b \in R} \right)\) là nghiệm của phương trình \(\left( {1 + 2i} \right)z - 8 - i = 0\). Tính S = a + b.
lượt xem
Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = 1 - 2i\). Tìm số phức \({\rm{w}} = \frac{{{z_1}}}{{{z_2}}}\).
lượt xem
lượt xem
Cho \(I = \int {\frac{{{e^x}}}{{\sqrt {{e^x} + 1} }}d{\rm{x}}} \). Khi đặt \(t = \sqrt {{e^x} + 1} \) thì ta có
lượt xem
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính diện tích toàn phần của vật tròn xoay thu được khi quay tam giác AA'C quanh trục AA'.
lượt xem
Tập nghiệm của bất phương trình \({\log _2}\left( {x - 1} \right) < 3\) là
lượt xem
Tìm số giao điểm của đồ thị hàm số \(\left( C \right):y = 2{{\rm{x}}^3} - 3{\rm{x}} + 2\) và parabol \(\left( P \right):y = - {x^2} + 10{\rm{x}} - 4\).
lượt xem
Với số thực dương a bất kỳ. Mệnh đề nào dưới đây đúng?
lượt xem
Giá trị nhỏ nhất của hàm số \(y = x + \sqrt {18 - {x^2}} \) là:
lượt xem
Cho hàm số y = f(x) xác định và liên tục trên ℝ và có bảng biến thiên:
Số điểm cực trị của hàm số đã cho là
lượt xem
Cho tứ diện ABCD với đáy BCD là tam giác vuông cân tại C. Các điểm M, N, P, Q lần lượt là trung điểm của AB, AC, BC, CD. Góc giữa MN và PQ bằng
lượt xem
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2{\rm{x}} - y + 2z - 3 = 0\) và mặt phẳng \(\left( Q \right):x + y + z - 3 = 0\). Giao tuyến của hai mặt phẳng (P) và (Q) là đường thẳng đi qua điểm nào dưới đây?
lượt xem
Trong không gian Oxyz, vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)? Biết \(\overrightarrow u = \left( {1; - 2;0} \right),\overrightarrow v = \left( {0;2; - 1} \right)\) là cặp vectơ chỉ phương của mặt phẳng (P).
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 7 = 0\). Xác định tọa độ tâm I và bán kính R của mặt cầu (S).
lượt xem
Trong không gian Oxyz, điểm N đối xứng với điểm M(3;-1;2) qua trục Oy là
lượt xem
Cho số phức z = 1 - 2i, điểm M biểu diễn số phức \(\overline z \) trên mặt phẳng tọa độ Oxy có tọa độ là
lượt xem
Cho hai số phức z = 3 - 5i và w = - 1 + 2i. Điểm biểu diễn số phức \(z' = \overline z - {\rm{w}}.z\) trong mặt phẳng Oxy có tọa độ là
lượt xem
Cho số phức z = 2 + i. Số phức liên hợp \(\overline z \) có phần thực, phần ảo lần lượt là
lượt xem
Nếu \(\int\limits_{ - 1}^2 {f\left( x \right)d{\rm{x}}} = 2\) và \(\int\limits_{ - 1}^2 {g\left( x \right)d{\rm{x}}} = - 1\) thì \(\int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]d{\rm{x}}} \) bằng
lượt xem
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình bên. Phương trình \(f\left( x \right) = \pi \) có bao nhiêu nghiệm thực phân biệt?
.png)
lượt xem
Tập nghiệm của bất phương trình \({2^{x + 1}} > 0\) là
lượt xem
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = \frac{{1 - 4{\rm{x}}}}{{2{\rm{x}} - 1}}\)
lượt xem
Đường cong ở hình bên là đồ thị của hàm số nào dưới đây.
.png)
lượt xem
Cho hàm số y = f(x) xác định, liên tục trên ℝ và có bảng biến thiên như hình vẽ.
Mệnh đề nào sau đây đúng?
lượt xem
Viết công thức tính diện tích xung quanh của hình trụ có chiều cao h bán kính đáy là R.
lượt xem
Cho các số thực dương a, b, c và a khác 1. Khẳng định nào sau đây là đúng?
lượt xem
Cho hàm số y = f(x) liên tục trên ℝ và có bảng biến thiên như sau:
Chọn khẳng định sai trong các khẳng định sau:
lượt xem
Thể tích V của một khối cầu có bán kính R là
lượt xem
.png)