Câu hỏi Đáp án 3 năm trước 54

Xét tứ diện ABCD có các cạnh AB = BC = CD = DA = 1 và AC, BD thay đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD bằng

A. \(\frac{{2\sqrt 3 }}{{27}}\)

Đáp án chính xác ✅

B. \(\frac{{4\sqrt 3 }}{{27}}\)

C. \(\frac{{2\sqrt 3 }}{9}\)

D. \(\frac{{4\sqrt 3 }}{9}\)

Lời giải của giáo viên

verified ToanVN.com

Gọi M, N lần lượt là trung điểm của BD, AC. Đặt BD = 2x,AC = 2y (x, y > 0)

Ta có \(CM \bot BD,AM \bot BD \Rightarrow BD \bot \left( {AMC} \right)\).

Ta có \(MA = MC = \sqrt {1 - {x^2}} ;MN = \sqrt {1 - {x^2} - {y^2}} ;{S_{AMN}} = \frac{1}{2}MN.AC = \frac{1}{2}y\sqrt {1 - {x^2} - {y^2}} \) 

\(\begin{array}{l}
{V_{ABCD}} = \frac{1}{3}.DS.{S_{AMC}} = \frac{1}{3}.2x.y\sqrt {1 - {x^2} - {y^2}}  = \frac{2}{3}\sqrt {{x^2}.{y^2}.\left( {1 - {x^2} - {y^2}} \right)} \\
 \le \frac{2}{3}\sqrt {\frac{{{{\left( {{x^2} + {y^2} + 1 - {x^2} - {y^2}} \right)}^3}}}{{27}}} \\
 \Rightarrow {V_{ABCD}} \le \frac{{2\sqrt 3 }}{{27}}
\end{array}\).

 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính đạo hàm của hàm số \(y = \tan \left( {\frac{\pi }{4} - x} \right)\):

Xem lời giải » 3 năm trước 82
Câu 2: Trắc nghiệm

Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó.

Xem lời giải » 3 năm trước 73
Câu 3: Trắc nghiệm

Cho phương trình:

\({\sin ^3}x + 2\sin x + 3 = \left( {2{{\cos }^3}x + m} \right)\sqrt {2{{\cos }^3}x + m - 2}  + 2{\cos ^3}x + {\cos ^2}x + m\).

Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm \(x \in \left[ {0;\frac{{2\pi }}{3}} \right)\)?

Xem lời giải » 3 năm trước 70
Câu 4: Trắc nghiệm

Cho cấp số cộng (un) có số hạng tổng quát là un = 3n - 2. Tìm công sai d của cấp số cộng.

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

Xem lời giải » 3 năm trước 70
Câu 6: Trắc nghiệm

Cho hàm số y = f(x) xác định trên R và hàm số y = f’(x)  có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \(y = f\left( {{x^2} - 3} \right)\).

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Cho cấp số nhân (un) có u1 = -3, công bội q = -2. Hỏi -192 là số hạng thứ mấy của (un) ?

Xem lời giải » 3 năm trước 69
Câu 8: Trắc nghiệm

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Xem lời giải » 3 năm trước 69
Câu 9: Trắc nghiệm

Tập xác định của hàm số y = tanx là:

Xem lời giải » 3 năm trước 68
Câu 10: Trắc nghiệm

Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết \(A\left( {1;3} \right),B\left( { - 2; - 2} \right),C\left( {3;1} \right)\). Tính cosin góc A của tam giác.

Xem lời giải » 3 năm trước 68
Câu 11: Trắc nghiệm

Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số \(y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}\) là

Xem lời giải » 3 năm trước 67
Câu 12: Trắc nghiệm

Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Phép tịnh tiến theo \(\overrightarrow v \) nào sau đây biến đường thẳng d thành chính nó?

Xem lời giải » 3 năm trước 65
Câu 14: Trắc nghiệm

Khối đa diện đều có 12 mặt thì có số cạnh là:

Xem lời giải » 3 năm trước 64
Câu 15: Trắc nghiệm

Cho tập \(A = \left\{ {0;2;4;6;8} \right\}\); \(B = \left\{ {3;4;5;6;7} \right\}\). Tập A \ B là

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »