Xét hai số phức \({{z}_{1}},{{z}_{2}}\), thỏa mãn \(\left| {{z}_{1}}+1 \right|=1,\left| {{z}_{2}}+2 \right|=\sqrt{3}\) và \(\left| {{z}_{1}}-{{z}_{2}}-1 \right|=\sqrt{6}\). Giá trị lớn nhất của \(\left| 5{{z}_{1}}+{{z}_{2}}+7-3i \right|\) bằng
A. \(3\sqrt 2 + 3\)
B. \(2\sqrt 2 - 3\)
C. \(3 - \sqrt 3 \)
D. \(2\sqrt 3 + 2\)
Lời giải của giáo viên
ToanVN.com
Gọi \({{z}_{1}}=a+bi,\,{{z}_{2}}=c+di, a,b,c,d\in \mathbb{R}\).
Từ giả thiết ta có: \({{\left( a+1 \right)}^{2}}+{{b}^{2}}=1,{{\left( c+2 \right)}^{2}}+{{d}^{2}}=3\).
\(\left| {{z}_{1}}-{{z}_{2}}-1 \right|=\left| \left( a+1 \right)+bi-\left( c+2 \right)-di \right|=\sqrt{6}\)
\(\Leftrightarrow {{\left[ \left( a+1 \right)-\left( c+2 \right) \right]}^{2}}+{{\left( b-d \right)}^{2}}=6 \Leftrightarrow {{\left( a+1 \right)}^{2}}-2\left( a+1 \right)\left( c+2 \right)+{{\left( c+2 \right)}^{2}}+{{b}^{2}}+{{d}^{2}}-2bd=6\)
\(\Leftrightarrow -2\left[ \left( a+1 \right)\left( c+2 \right)+bd \right]=2 \Leftrightarrow \left[ \left( a+1 \right)\left( c+2 \right)+bd \right]=-1\)
Ta có: \(5{{z}_{1}}+{{z}_{2}}+7=5\left( {{z}_{1}}+1 \right)+\left( {{z}_{2}}+2 \right)=5\left( a+bi+1 \right)+\left( c+di+2 \right)\)
\(\Leftrightarrow 5{{z}_{1}}+{{z}_{2}}+7=\left( 5a+c+7 \right)+\left( 5b+d \right)i=5\left( a+1 \right)+\left( c+2 \right)+\left( 5b+d \right)i\)
\(\Rightarrow \left| 5{{z}_{1}}+{{z}_{2}}+7 \right|=\sqrt{{{\left[ 5\left( a+1 \right)+\left( c+2 \right) \right]}^{2}}+{{\left( 5b+d \right)}^{2}}}\)
\(=\sqrt{25{{\left( a+1 \right)}^{2}}+10\left( a+1 \right)\left( c+2 \right)+{{\left( c+2 \right)}^{2}}+25{{b}^{2}}+10bd+{{d}^{2}}}\)
\(=\sqrt{10\left[ \left( a+1 \right)\left( c+2 \right)+bd \right]+28}=3\sqrt{2}\).
Áp dụng bất đẳng thức môđun: \(\left| z+{z}' \right|\le \left| z \right|+\left| {{z}'} \right|. \Rightarrow \left| 5{{z}_{1}}+{{z}_{2}}+7-3i \right|\le \left| 5{{z}_{1}}+{{z}_{2}}+7 \right|+\left| -3i \right|=3\sqrt{2}+3\).
Vậy giá trị lớn nhất của \(P=3\sqrt{2}+3\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu \({f}'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Thể tích khối nón có chiều cao h, bán kính đường tròn đáy r là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB=A{{A}^{'}}=a,AD=2a\), (tham khảo hình bên).
.png)
Góc giữa đường thẳng CA' và mặt phẳng (ABCD) là \(\alpha \). Khi đó \(\tan \alpha \) bằng
Cho hàm số \(f\left( x \right)=2\sin 2x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=10\). Khi đó \(\int\limits_{5}^{2}{\left[ 2-4f\left( x \right) \right]\text{d}x}\) bằng
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( 1;1;1 \right); B\left( -1;1;0 \right); C\left( 1;3;2 \right)\). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ \(\overrightarrow{a}\) nào dưới đây là một vectơ chỉ phương?
Có bao nhiêu số phức z thỏa \(\left| z+1-2i \right|=\left| \overline{z}+3+4i \right|\) và \(\frac{z-2i}{\overline{z}+i}\) là một số thuần ảo?
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{0}{g\left( x \right)\text{d}x}=5\) khi đó \(\int\limits_{0}^{1}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}\) bằng
Hàm số nào dưới đây đồng biến trên \(\mathbb{R}\)?
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;2;1 \right)\) và đi qua điểm A(0;4;-1) là.
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm \(A\left( 1;0;1 \right)\) và \(B\left( 3;2;-1 \right)\).
Hàm số \(y = f\left( x \right)\) có bảng biên thiên như sau.
Khẳng định nào sau đây đúng?
Nghiệm của phương trình \({2^{2x - 1}} = \frac{1}{4}\) là
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết SA=3a, tính thể tích V của khối chóp S.ABCD.


