Câu hỏi Đáp án 3 năm trước 40

Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính sác xuất để mỗi quyển sách tiếng Anh đều được xếp giữa hai quyển sách Toán, đồng thời hai quyển sách Toán T1 và Toán T2 luôn được xếp cạnh nhau.

A. \(\frac{1}{{210}}\)

Đáp án chính xác ✅

B. \(\frac{1}{{600}}\)

C. \(\frac{1}{{300}}\)

D. \(\frac{1}{{450}}\)

Lời giải của giáo viên

verified ToanVN.com

Số phần tử của không gian mẫu: \(\left| \Omega  \right|=10!\).

Đếm số cách xếp thỏa mãn yêu cầu bài toán:

Coi hai quyển T1 và T2 là một phần tử kép.

Bước 1: Số cách xếp 6 quyển sách toán, trong đó hai quyển T1 và T2 xếp cạnh nhau là 2.5!.

Bước 2: Xếp 3 quyển sách tiếng Anh vào 3 trong số 4 khoảng trống giữa các quyển sách Toán, có \(A_{4}^{3}\) cách.

Bước 3: Xếp 1 quyển sách Văn vào khoảng trống ở hai đầu hoặc 1 khoảng trống giữa hai quyển sách toán có 3 cách xếp.

Áp dụng quy tắc nhân ta có \(2.5!.A_{4}^{3}.3=17280\)

Vậy xác suất cần tìm là \(P=\frac{1}{210}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho cấp số nhân (un) với \({u_1} = 2\) và \({u_4} = 16\). Công bội của cấp số nhân đã cho bằng

Xem lời giải » 3 năm trước 79
Câu 2: Trắc nghiệm

Tìm tập xác định D của hàm số \(y = {\left( {2x - 1} \right)^{\frac{1}{3}}}\)

Xem lời giải » 3 năm trước 78
Câu 3: Trắc nghiệm

Trên mặt phẳng tọa độ, điểm biểu diễn số phức z =  - 1 - 2i là điểm nào dưới đây ?

Xem lời giải » 3 năm trước 75
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} - 4x + 8y - 2z + 12 = 0.\) Tâm của (S) có tọa độ là

Xem lời giải » 3 năm trước 72
Câu 5: Trắc nghiệm

Với a là số thực dương tùy ý, \({\log _8}\left( {{a^3}} \right)\) bằng

Xem lời giải » 3 năm trước 72
Câu 6: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\). Một vectơ chỉ phương của d là

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.

Đồ thị trên là của hàm số nào ?

Xem lời giải » 3 năm trước 69
Câu 8: Trắc nghiệm

Cho các số thực dương \(a,\text{ }b\) thỏa mãn điều kiện \(({{2}^{a+b+1}}+{{2}^{a+2b-1}})({{2}^{3a+4b-3}}+{{2}^{1-a-b}})={{2}^{2a+3b}}.\) Giá trị của biểu thức \(P={{a}^{2}}+{{b}^{2}}\) thuộc tập hợp nào dưới đây ?

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thực của phương trình \(3f\left( x \right) - 16 = 0\) là

Xem lời giải » 3 năm trước 65
Câu 10: Trắc nghiệm

Trong không gian Oxyz, phương trình mặt phẳng \(\left( P \right)\) qua hai điểm \(A\left( 2;1;-3 \right)\), \(B\left( 3;2;-1 \right)\) và vuông góc với mặt phẳng \(\left( Q \right):x+2y+3z-4=0\) là

Xem lời giải » 3 năm trước 65
Câu 11: Trắc nghiệm

Cho số phức z thỏa mãn điều kiện \(\left( {1 + i} \right)\overline z  = 1 + 3i\). Tìm phần ảo của số phức \(w = 1 - iz + \overline z \).

Xem lời giải » 3 năm trước 64
Câu 12: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y = {x^3} + x + 2\) với đường thẳng y =  - 2x + 1 là 

Xem lời giải » 3 năm trước 64
Câu 13: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết \(AB=a\sqrt{2},\,\text{ }AD=2a\), \(SA\bot (ABCD)\) và \(SA=a\sqrt{2}\). Góc giữa hai đường thẳng SC và AB bằng

Xem lời giải » 3 năm trước 64
Câu 14: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha  \right):2x + 3y + 2 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( \alpha  \right)?\)

Xem lời giải » 3 năm trước 64
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \(\widehat{ABC}=60{}^\circ \). Hình chiếu vuông góc của điểm S lên mặt phẳng \(\left( ABCD \right)\) trùng với trọng tâm của tam giác ABC, gọi \(\varphi \) là góc giữa đường thẳng SB và mặt phẳng \(\left( SCD \right)\), tính \(\sin \varphi \) biết rằng SB=a.

Xem lời giải » 3 năm trước 63

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »