Lời giải của giáo viên
ToanVN.com
Số các số tự nhiên gồm năm chữ số khác nhau lập từ các số 1,2,3,4,5 là 5! = 120
CÂU HỎI CÙNG CHỦ ĐỀ
Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên R và \(\int\limits_{0}^{4}{f\left( x \right)dx=F(4)-G(0)+a}\) (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x) y = G(x) x = 0 và x = 4. Khi S = 8 thì a bằng
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thảo mãn \(({4^b} - 1)(a{.3^{b\;\;}} - 10) < 0\)?
Cho cấp số nhân (un) với u1 = 3 và công bội q = 2. Số hạng tổng quát \({{u}_{n}}\left( n\ge 2 \right)\) bằng
Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong hình bên. Giá trị cực tiểu của hàm số đã cho bằng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30;50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x - 2y + 2z + 3 = 0 là:
Cho khối nón có diện tích đáy \(3{{a}^{2}}\) và chiều cao 2a. Thể tích của khối nón đã cho bằng
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 3 (tham khảo hình bên). Khoảng cách từ B đến mặt phẳng (ACC'A') bằng
Trong không gian Oxyz, cho điểm A(1; 2; 2) Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
Trong không gian Oxyz, cho mặt cầu (S): \({{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=4\). Tâm của (S) có toạ độ là
Cho khối chóp S.ABC có chiều cao bằng 5, đáy ABC có diện tích bằng 6. Thể tích khối chóp. S.ABC bằng:
Có bao nhiều giá trị nguyên âm của tham số a để hàm số \(y=\left| {{x}^{4}}+a{{x}^{2}}-8x \right|\) có đúng ba điểm cực trị?
Trong không gian Oxyz, cho điểm M(2; -2; 1) và mặt phẳng \((P):2x-3y-z+1=0\). Đường thẳng đi qua M và vuông góc với (P) có phương trình là:
Nếu \(\int\limits_{0}^{3}{f(x)d}x=6\) thì \(\int\limits_{0}^{3}{\left[ \frac{1}{3}f(x) + 2\right]d}x\) bằng


