Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng \(\left( P \right):\,x - 2y + z - 1 = 0\) có dạng
A. \(d:\frac{{x + 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{1}\)
B. \(d:\frac{{x + 2}}{1} = \frac{y}{{ - 2}} = \frac{{z + 2}}{1}\)
C. \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\)
D. \(d:\frac{{x - 2}}{2} = \frac{y}{{ - 4}} = \frac{{z - 2}}{2}\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) liên tục trên R, có đạo hàm \(f'(x)\, = \,{x^3}{\left( {x\, - \,1} \right)^2}\left( {x\, + \,2} \right)\). Hỏi hàm số \(y=f(x)\) có bao nhiêu điểm cực trị?
Tập xác định của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^{\frac{3}{5}}} + {\left( {x - 3} \right)^{ - 2}}\) là
Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(3;- 3;1) và đi qua điểm A(5;- 2;1) có phương trình là
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Tập tất cả các giá trị của tham số m để phương trình \(f(x)=m\) có ba nghiệm phân biệt là
Cho hàm số \(y=a^x\) với \(0 < a \ne 1\). Mệnh đề nào sau đây SAI?
Cho hai số thực x, y thỏa mãn \({\log _{\sqrt 3 }}\left( {{y^2} + 8y + 16} \right) + {\log _2}\left[ {\left( {5 - x} \right)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{\left( {2y + 8} \right)^2}.\) Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức \(P = \left| {\sqrt {{x^2} + {y^2}} - m} \right|\) không vượt quá 10. Hỏi S có bao nhiêu tập con không phải là tập rỗng?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;\,2;\,1} \right),B\left( {3;\,4;\,0} \right)\), mặt phẳng \(\left( P \right):ax + by + cz + 46 = 0\). Biết rằng khoảng cách từ A, B đến mặt phẳng (P) lần lượt bằng 6 và 3. Giá trị của biểu thức \(T=a+b+c\) bằng
Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình \(2{z^2} + \sqrt 3 z + 3 = 0\). Giá trị của biểu thức \({z_1}^2 + {z_2}^2\) bằng
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm A(0;- 1;0); B(2;0;0); C(0;0;3) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \cos 2x\) là
Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện \(\left| {\overline z + 1 + 2i} \right| = 1\) là
Cho hàm \(y=f(x)\) có \(f(2)=2, f(3)=5\); hàm số \(y=f'(x)\) liên tục trên [2;3]. Khi đó \(\int\limits_2^3 {f'\left( x \right){\rm{d}}x} \) bằng
Số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{{x^2} + 9}}\) là
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh \(a\), \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC. Thể tích của khối lăng trụ ABC.A'B'C' là
Cho hình chóp S.ABC có SA vuông góc với (ABC), \(AB = a,AC = a\sqrt 2 ,\,\widehat {BAC} = {45^0}\). Gọi \(B_1, C_1\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Thể tích khối cầu ngoại tiếp hình chóp \(ABCC_1B_1\) bằng


