Câu hỏi Đáp án 3 năm trước 60

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng

A. 2

B. -1

Đáp án chính xác ✅

C. -2

D. 1

Lời giải của giáo viên

verified ToanVN.com

Tacó:\(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\Leftrightarrow {{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}-A=0\) nên \(M\in \left( P \right):x+2y+2z-A=0\),

do đó điểm M là điểm chung của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( P \right)\).

Mặt cầu \(\left( S \right)\) có tâm \(I\left( 2;1;1 \right)\) và bán kính R=3.

Tồn tại điểm M khi và chỉ khi \(d\left( I,\left( P \right) \right)\le R\Leftrightarrow \frac{|6-A|}{3}\le 3\Leftrightarrow -3\le A\le 15\)

Do đó, với M thuộc mặt cầu \(\left( S \right)\) thì \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\ge -3\).

Dấu đẳng thức xảy ra khi M là tiếp điểm của \(\left( P \right):x+2y+2z+3=0\) với \(\left( S \right)\) hay M là hình chiếu của I lên \(\left( P \right)\). Suy ra \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\) thỏa: 

\(\left\{ \begin{array}{l} {x_0} + 2{y_0} + 2{z_0} + 3 = 0\\ {x_0} = 2 + t\\ {y_0} = 1 + 2t\\ {z_0} = 1 + 2t \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = - 1\\ {x_0} = 1\\ {y_0} = - 1\\ {z_0} = - 1 \end{array} \right.\)

\( \Rightarrow {x_0} + {y_0} + {z_0} =  - 1\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Viết phương trình đường thẳng đi qua hai điểm \(A\left( 1;\,2;\,-3 \right)\) và \(B\left( 3;\,-1;\,1 \right)\)?

Xem lời giải » 3 năm trước 80
Câu 2: Trắc nghiệm

Nghiệm của phương trình \({\log _4}\left( {3x - 2} \right) = 2\) là

Xem lời giải » 3 năm trước 78
Câu 3: Trắc nghiệm

Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).

Xem lời giải » 3 năm trước 74
Câu 4: Trắc nghiệm

Cho một cấp số cộng có \({{u}_{4}}=2\), \({{u}_{2}}=4\). Hỏi \({{u}_{1}}\) và công sai d bằng bao nhiêu?

Xem lời giải » 3 năm trước 73
Câu 5: Trắc nghiệm

Trong không gian Oxyz, phương trình mặt cầu tâm \(I\left( -1;\,2;\,0 \right)\) và đi qua điểm \(A\left( 2;\,-2;\,0 \right)\) là

Xem lời giải » 3 năm trước 72
Câu 6: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3{\rm{ }}khi x \ge 1\\ 5 - x{\rm{ khi }}x < 1 \end{array} \right.\). Tính \(I = 2\int_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x}  + 3\int_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \)

Xem lời giải » 3 năm trước 72
Câu 7: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} + \sin x\) là 

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Đồ thị hàm số \(y=\,-\,{{x}^{4\,}}\,+\,{{x}^{2}}\,+\,2\) cắt trục Oy tại điểm

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y={{x}^{4}}-10{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\) . Tổng M+m bằng:

Xem lời giải » 3 năm trước 66
Câu 10: Trắc nghiệm

Số phức liên hợp của số phức z = 2 + i là

Xem lời giải » 3 năm trước 65
Câu 11: Trắc nghiệm

Trên mặt phẳng tọa độ, điểm biểu diễn số phức z=-1+2i là điểm nào dưới đây?

Xem lời giải » 3 năm trước 65
Câu 12: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 64
Câu 13: Trắc nghiệm

Tính đạo hàm của hàm số \(y = {6^x}\)

Xem lời giải » 3 năm trước 64
Câu 14: Trắc nghiệm

Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc tập hợp P là

Xem lời giải » 3 năm trước 63
Câu 15: Trắc nghiệm

Số nghiệm nguyên của bất phương trình \({{\left( 17-12\sqrt{2} \right)}^{x}}\ge {{\left( 3+\sqrt{8} \right)}^{{{x}^{2}}}}\) là

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »