Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({{d}_{1}}:\frac{x-3}{-1}=\frac{y-3}{-2}=\frac{z+2}{1}; {{d}_{2}}:\frac{x-5}{-3}=\frac{y+1}{2}=\frac{z-2}{1}\) và mặt phẳng \(\left( P \right):x+2y+3z-5=0\). Đường thẳng vuông góc với \(\left( P \right)\), cắt \({{d}_{1}}\) và \({{d}_{2}}\) có phương trình là
A. \(\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z - 1}}{3}\)
B. \(\frac{{x - 3}}{1} = \frac{{y - 3}}{2} = \frac{{z + 2}}{3}\)
C. \(\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{z}{3}\)
D. \(\frac{{x - 1}}{3} = \frac{{y + 1}}{2} = \frac{z}{1}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(\Delta \) là đường thẳng cần tìm. Gọi \(M=\Delta \cap {{d}_{1}}; N=\Delta \cap {{d}_{2}}\).
Vì \(M\in {{d}_{1}}\) nên \(M\left( 3-t\,;\,3-2t\,;\,-2+t \right)\),
vì \(N\in {{d}_{2}}\) nên \(N\left( 5-3s\,;\,-1+2s\,;\,2+s \right)\)
\(\overrightarrow{MN}=\left( 2+t-3s\,;\,-4+2t+2s\,;\,4-t+s \right), \left( P \right)\) có một vec tơ pháp tuyến là \(\overrightarrow{n}=\left( 1\,;\,2\,;\,3 \right)\);
Vì \(\Delta \bot \left( P \right)\) nên \(\overrightarrow{n}\,,\,\overrightarrow{MN}\) cùng phương, do đó:
\(\left\{ \begin{array}{l} \frac{{2 + t - 3s}}{1} = \frac{{ - 4 + 2t + 2s}}{2}\\ \frac{{ - 4 + 2t + 2s}}{2} = \frac{{4 - t + s}}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} s = 1\\ t = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} M\left( {1\,;\, - 1\,;\,0} \right)\,\,\\ N\left( {2\,;\,1\,;\,3} \right) \end{array} \right.\)
\(\Delta \) đi qua M và có một vecto chỉ phương là \(\overrightarrow{MN}=\left( 1\,;\,2\,;\,3 \right)\).
Do đó \(\Delta \) có phương trình chính tắc là \(\frac{x-1}{1}=\frac{y+1}{2}=\frac{z}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Viết phương trình đường thẳng đi qua hai điểm \(A\left( 1;\,2;\,-3 \right)\) và \(B\left( 3;\,-1;\,1 \right)\)?
Nghiệm của phương trình \({\log _4}\left( {3x - 2} \right) = 2\) là
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Cho một cấp số cộng có \({{u}_{4}}=2\), \({{u}_{2}}=4\). Hỏi \({{u}_{1}}\) và công sai d bằng bao nhiêu?
Trong không gian Oxyz, phương trình mặt cầu tâm \(I\left( -1;\,2;\,0 \right)\) và đi qua điểm \(A\left( 2;\,-2;\,0 \right)\) là
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3{\rm{ }}khi x \ge 1\\ 5 - x{\rm{ khi }}x < 1 \end{array} \right.\). Tính \(I = 2\int_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x} + 3\int_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \)
Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} + \sin x\) là
Đồ thị hàm số \(y=\,-\,{{x}^{4\,}}\,+\,{{x}^{2}}\,+\,2\) cắt trục Oy tại điểm
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y={{x}^{4}}-10{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\) . Tổng M+m bằng:
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z=-1+2i là điểm nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc tập hợp P là
Cho khối chóp có thể tích bằng \(32c{{m}^{3}}\) và diện tích đáy bằng \(16c{{m}^{2}}.\) Chiều cao của khối chóp đó là


