Trong không gian Oxyz, gọi \(\left( \alpha \right)\) là mặt phẳng đi qua điểm \(A\left( 1;2;3 \right)\) và song song với mặt phẳng \(\left( \beta \right):x-4y+z+12=0\). Phương trình nào sau đây là phương trình của \(\left( \alpha \right)\) ?
A. x - 4y + z + 4 = 0
B. x - 4y + z - 12 = 0
C. x - 4y + z - 4 = 0
D. x - 4y + z + 3 = 0
Lời giải của giáo viên
ToanVN.com
Mặt phẳng \(\left( \alpha \right)\) đi qua A và nhận vectơ pháp tuyến \(\left( 1;-4;1 \right)\) của \(\left( \beta \right)\) làm vectơ pháp tuyến nên nó có phương trình là \(1\left( x-1 \right)-4\left( y-2 \right)+1\left( z-3 \right)=0\Leftrightarrow x-4y+z+4=0\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi x1, x2 là hai nghiệm nguyên dương của bất phương trình \({\log _2}\left( {1 + x} \right) < 2\). Tính giá trị của \(P = {x_1} + {x_2}\).
Với a, b là các số thực dương tùy ý, \(\log \frac{{{a^3}}}{b}\) bằng
Cho khối chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Tính góc giữa góc giữa mặt bên và mặt đáy.
.png)
Cho x, y là các số thực thỏa mãn \({{\log }_{3}}\left( x+y \right)={{\log }_{4}}\left( {{x}^{2}}+{{y}^{2}} \right)\). Tính tổng tất cả các giá trị nguyên thuộc tập giá trị của biểu thức \(P={{x}^{3}}+{{y}^{3}}\).
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):3x+4y+2z+4=0\) và điểm \(A\left( 1;-2;3 \right)\). Tính khoảng cách d từ điểm A đến mặt phẳng \(\left( P \right)\).
Hàm số y = f(x) có bảng biến thiên dưới đây
Công thức đường tiệm cận đứng của đồ thị hàm số y = f(x) là
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AD=2a, \(AA'=3a\sqrt{2}\). Tính diện tích toàn phần S của hình trụ có hai đáy lần lượt ngoại tiếp hai đáy của hình hộp chữ nhật đã cho.
Cho mặt cầu có bán kính R = 2. Thể tích khối cầu đã cho bằng
Cho hàm số y = f(x) liên tục trên R thỏa mãn \(\int\limits_0^1 {f\left( x \right)dx} = 3\) và \(\int\limits_1^5 {f\left( x \right)dx} = 9\). Tính tích phân \(I = \int\limits_{ - 1}^1 {f\left( {\left| {3x - 2} \right|} \right)dx} \).
Có ba học sinh An, Bảo, Chương và bốn phần thưởng nhất, nhì, ba, tư. Có bao nhiêu cách chọn lựa phần thưởng cho 3 học sinh đó, biết rằng mỗi học sinh chỉ được một phần thưởng ?
Kí hiệu \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \(4{{z}^{2}}-16z+17=0.\) Trên mặt phẳng toạ độ, điểm nào dưới đây là điểm biểu diễn số phức \(w=i{{z}_{0}}\)?
Biết \(\int\limits_{0}^{2}{f\left( x \right)dx}=3,\,\int\limits_{0}^{5}{f\left( x \right)dx}=4\), khi đó \(\int\limits_{2}^{5}{2f\left( x \right)dx}\) bằng
Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và thể tích bằng 3a3. Tính chiều cao h của lăng trụ đã cho.
Tập xác định của hàm số \(y = {\left( {{x^2} - 7x + 10} \right)^{\frac{5}{3}}}\) là


