Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). Gọi M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.
A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
Lời giải của giáo viên
ToanVN.com
Gọi \(A \in {d_1}:\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\)\( \Rightarrow A\left( {a + 2;a + 4; - 2a} \right)\)
\(B \in {d_2}:\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\)\( \Rightarrow B\left( {2b + 3; - b - 1; - b - 2} \right)\)
Khi đó \(\overrightarrow {AB} = \left( {2b - a + 1; - b - a - 5; - b + 2a - 2} \right)\)
Mà \(\overrightarrow {AB} \bot \overrightarrow {{n_1}} = \left( {1;1; - 2} \right)\) và \(\overrightarrow {AB} \bot \overrightarrow {{n_2}} = \left( {2; - 1; - 1} \right)\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}2b - a + 1 - b - a - 5 -\\2\left( { - b + 2a - 2} \right) = 0\\2\left( {2b - a + 1} \right) + b + a + 5 + b\\ - 2a + 2 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6a + 3b = 0\\ - 3a + 6b + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;2} \right)\\B\left( { - 1;1;0} \right)\end{array} \right.\end{array}\)
Vậy trung điểm M của AB là \(M\left( {0;2;1} \right) \Rightarrow OM = \sqrt 5 .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {3x} \right) = f\left( x \right) - 2x,\,\,\,\forall x \in \mathbb{R}\) và \(\int\limits_0^1 {f\left( x \right)dx = 5} \). Giá trị \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(O\left( {0;0;0} \right)\) và vuông góc với đường thẳng \(d:\,\,\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\) là
Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?
Số giá trị nguyên của tham số m để hàm số \(y = {x^3} - m{x^2} + 3mx\) đồng biến trên \(\left( { - \infty ; + \infty } \right)\) là
Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là
Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng
Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là
Có bao nhiêu số phức z thỏa mãn \(\left| {{z^2}} \right| = 2\left| {z - \overline z } \right|\) và \(\left| {z - 2 - 2i} \right| = \left| {z - 1 - i} \right|\) ?
Cho tích phân \(I = \int\limits_0^\pi {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} + f\left( x \right).f''\left( x \right) = 15{x^4} + 12x,\,\,\forall x \in \mathbb{R}\) và \(f\left( 0 \right) = f'\left( 0 \right) = 1\). Giá trị của \({f^2}\left( 1 \right)\) bằng:
Tích phân \(\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \) bằng
Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng


