Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 2;4} \right);\,\,B\left( { - 3;3; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 8 = 0\). Xét điểm M là điểm thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + 3M{B^2}\) bằng:
A. 135
B. 105
C. 108
D. 145
Lời giải của giáo viên
ToanVN.com
Gọi \(I\left( {a;b;c} \right)\) là điểm thỏa mãn đẳng thức : \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \)
\(\begin{array}{l} \Rightarrow 2\left( {2 - a; - 2 - b;4 - c} \right) + 3\left( { - 3 - a;3 - b; - 1 - c} \right) = \overrightarrow 0 \\ \Rightarrow \left\{ \begin{array}{l}4 - 2a - 9 - 3a = 0\\ - 4 - 2b + 9 - 3b = 0\\8 - 2c - 3 - 3c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 5a - 5 = 0\\ - 5b + 5 = 0\\ - 5c + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = 1\end{array} \right. \Rightarrow I\left( { - 1;\;1;\;1} \right)\end{array}\)
Ta có :
\(\begin{array}{l}2M{A^2} + 3M{B^2} = 2{\overrightarrow {MA} ^2} + 3{\overrightarrow {MB} ^2}\\ = 2{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 3{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2}\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right) + \overrightarrow {MI} \left( {2\overrightarrow {IA} + 3\overrightarrow {IB} } \right)\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right)\end{array}\)
Do I, A, B cố định nên \(2I{A^2} + 3I{B^2} = const\).
\( \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} \Leftrightarrow 5M{I^2}_{\min }\)\( \Leftrightarrow \) M là hình chiếu của I trên (P)
Gọi \(\left( \Delta \right)\) là đường thẳng đi qua I vuông góc với (P) , ta có phương trình của \(\left( \Delta \right):\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 1 + 2t\end{array} \right.\).
M là hình chiếu của I lên (P) \( \Rightarrow M \in \left( \Delta \right) \Rightarrow M\left( { - 1 + 2t;1 - t;1 + 2t} \right)\) .
Lại có \(M \in \left( P \right)\)
\(\begin{array}{l} \Rightarrow 2\left( { - 1 + 2t} \right) - \left( {1 - t} \right) + 2\left( {1 + 2t} \right) - 8 = 0\\ \Leftrightarrow - 2 + 4t - 1 + t + 2 + 4t - 8 = 0\\ \Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {1;0;3} \right)\end{array}\)
Khi đó ta có
\(\begin{array}{l}M{I^2} = 4 + 1 + 4 = 9;\;\;\;I{A^2} = 9 + 9 + 9 = 27;\;\;\;I{B^2} = 4 + 4 + 4 = 13\\ \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} = 5.9 + 2.27 + 3.12 = 135\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(2f\left( x \right) + 3 = 0\) là:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\) và đường thẳng \(d:\,\,\dfrac{x}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 2}}{{ - 1}}\). Hình chiếu vuông góc của d trên (P) có phương tình là:
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 2} \right) - {x^3} + 3x\) đồng biến trên khoảng nào dưới đây ?
Tập hợp tất cả các giá trị thực của tham số m để hàm số \(y = - {x^3} - 6{x^2} + \left( {4m - 9} \right)x + 4\)nghịch biến trên khoảng \(\left( { - \infty - 1} \right)\) là:
Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\) và \(\left( Q \right):\,\,x + 2y + 2z - 3 = 0\) bằng:
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1;1; - 1} \right)\) và \(B\left( {2;3;2} \right)\). Véc tơ \(\overrightarrow {AB} \) có tọa độ là:
Tổng tất cả các nghiệm của phương trình \({\log _3}\left( {7 - {3^x}} \right) = 2 - x\) bằng:
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\) , mệnh đề nào dưới đây đúng?
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây ?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng:
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxz} \right)\) có phương trình là
Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là:
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 1;3} \right]\). Giá trị của \(M - m\) bằng


