Trong hệ tọa độ \(\text{O}xyz\), cho điểm \(A\left( 2;1;3 \right)\), mặt phẳng \((\alpha ):2x+2y-z-3=0\) và mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-4y-10z+2=0\). Gọi \(\Delta \) là đường thẳng đi qua A, nằm trong mặt phẳng \((\alpha )\) và cắt (S) tại hai điểm M,N. Độ dài đoạn MN nhỏ nhất là:
A. \(2\sqrt {30} \)
B. \(\sqrt {30} \)
C. \(\frac{{\sqrt {30} }}{2}\)
D. \(\frac{{3\sqrt {30} }}{2}\)
Lời giải của giáo viên
ToanVN.com
.png)
+ Mặt cầu (S) có tâm \(I\left( 3;2;5 \right)\) và bán kính R=6.
Ta có: \(A\in (\alpha ),IA=\sqrt{6}<R\) nên \((S)\cap (\alpha )=(C)\) và A nằm trong mặt cầu (S).
Suy ra: Mọi đường thẳng \(\Delta \) đi qua A, nằm trong mặt phẳng \((\alpha )\) đều cắt (S) tại hai điểm M,N. (M,N cũng chính là giao điểm của \(\Delta \) và (C)).
+ Vì \(d(I,\Delta )\le IA\) nên ta có: \(MN=2\sqrt{{{R}^{2}}-{{d}^{2}}(I,\Delta )}\ge 2\sqrt{{{R}^{2}}-I{{A}^{2}}}=2\sqrt{30}\).
Dấu ''='' xảy ra khi A là điểm chính giữa dây cung MN.
Vậy độ dài đoạn MN nhỏ nhất là MN bằng \(2\sqrt{30}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+1}{x-1}\) trên \(\left[ -3;-1 \right]\). Khi đó M.m bằng
Cho hàm số y=f(x) có bảng biến thiên như hình sau
.png)
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Số phức \(z=a+bi\,\,\left( a,b\in \mathbb{R} \right)\) có điểm biểu diễn như hình vẽ bên dưới. Tìm a và b
.jpg.png)
Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{3}}=-7;\,\,{{u}_{4}}=8\). Hãy chọn mệnh đề đúng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{-3}=\frac{z-5}{-1}\) và mặt phẳng \(\left( P \right):3x-3y+2z+6=0\). Mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
Cho hình lập phương ABCD.A'B'C'D' (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A'D bằng
.png)


