Trong các khẳng định sau, khẳng định nào là khẳng định sai?
A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
B. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại.
C. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau
D. Nếu một đường thẳng và một mặt phẳng (không chứa đường thẳng đó) cùng vuông góc với một đường thẳng thì song song với nhau.
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số có đồ thị \((C):y = \frac{{2x + 1}}{{x - 1}}\). Gọi M là điểm bất kì thuộc đồ thị (C ). Gọi tiếp tuyến của đồ thị (C) tại M cắt các tiệm cận của (C ) tại hai điểm P và Q. Gọi G là trọng tâm tam giác IPQ (với I là giao điểm của hai đường tiệm cận của (C )). Diện tích tam giác GPQ là
Hàm số có đạo hàm bằng \(2x + \frac{1}{{{x^2}}}\) là:
Cho dãy số (un) xác định bởi \({u_n} = \frac{1}{{{n^2}}} + \frac{3}{{{n^2}}} + \ldots + \frac{{2n - 1}}{{{n^2}}},n \in {N^*}\). Giá trị của un bằng
Cho tập S có 20 phần tử. Số tập con gồm 3 phần tử của S.
Trong các dãy số sau đây, dãy số nào là một cấp số cộng?
Cho tứ diện SABC có các cạnh SA, SB, SC đôi một vuông góc với nhau. Biết SA = 3a,SB = 4a,SC = 5a Tính theo a thể tích V của khối tứ diện SABC
Cho lăng trụ tam giác ABC.A'B'C. Đặt \(\overrightarrow {AA'} = \overrightarrow a ;\overrightarrow {AB} = \overrightarrow b ;\overrightarrow {AC} = \overrightarrow c \). Gọi I là điểm thuộc CC’sao cho \(\overrightarrow {CI'} = \frac{1}{3}\overrightarrow {C'C} \), điểm G thỏa mãn \(\overrightarrow {GB} + \overrightarrow {GA'} + \overrightarrow {GC'} = \overrightarrow 0 \). Biểu diễn véc tơ \(\overrightarrow {IG} \) qua véc tơ \(\overrightarrow a ;\overrightarrow b ;\overrightarrow c \). Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Trong hệ tọa độ Oxy cho tam giác ABC có phương trình đường thẳng BC:x + 7y - 13 = 0 Các chân đường cao kẻ từ B, C lần lượt là E(2;5),F(0;4) Biết tọa độ đỉnh A là A(a; b) Khi đó:
Cho cấp số nhân \(\left( {{u_n}} \right)\) cố công bội q và u1 > 0. Điểu kiện của q để cấp số nhân \(\left( {{u_n}} \right)\) có ba số hạng liên tiếp là độ dài ba cạnh của một tam giác là :
Cho hình chóp S.ABC có SA = 1,SB = 2,SC = 3 và \(\widehat {ASB} = 60^\circ ,\widehat {BSC} = 120^\circ ,\widehat {CSA} = 90^\circ \). Tính thể tích khối chóp S.ABC .
Đạo hàm của hàm số \(y = \sin \left( {\frac{{3\pi }}{2} - 4x} \right)\) là:
Cho hàm số y = ax4 + bx2 + c có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng ?
.png)
Cho hàm số \(y = \frac{{x - 1}}{{m{x^2} - 2x + 3}}\). Có tất cả bao nhiêu giá trị m để đồ thị hàm số có đúng hai đường tiệm cận.
Cho hàm số \(y = \frac{{{x^3}}}{3} + 3{x^2} - 2\) có đồ thị là (C). Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến có hệ số góc k = -9.


