Lời giải của giáo viên
ToanVN.com
Ta có \(\Delta’=m^2-8 m+12\).
Nếu \(\Delta’>0\) thì phương trình có hai nghiệm thực, khi đó \(\left|z_1\right|=\left|z_2\right| \Leftrightarrow z_1=-z_2 \Leftrightarrow z_1+z_2=0 \Leftrightarrow m=0\) (thỏa mãn);
Nếu \(\Delta'<0\), thì phương trình có hai nghiệm thức khi đó là hai số phức liên hợp nên ta luôn có \(\left|z_1\right|=\left|z_2\right|\), hay \(m^2-8 m+12<0 \Leftrightarrow 2<m<6\) luôn thỏa mãn.
Vậy có 4 giá trị nguyên của tham số thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=\mathrm{ax}^4+b x^2+c(a, b, c \in \mathbb{R})\) có đồ thị là đường cong trong hình bên.
Giá trị cực đại của hàm số đã cho bằng.
Cho hàm số y=f(x) có đạo hàm là \(f'(x)=12 x^2+2, \forall x \in \mathbb{R}\) và f(1)=3. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(0)=2, khi đó F(1) bằng
Cho hình hộp \(ABCD \dot A’B’C’D’\) có tất cả các cạnh bằng nhau (tham khảo hình bên).
Góc giữa hai đường thẳng A’C’ và BD bằng
Cho khối lăng trụ có diện tích đáy B và chiều cao h. Thể tích V của khối lăng trụ đã cho được tính theo công thức nào dưới đây?
Gọi \(S\) là tập hợp tất cả các số phức \(z\) sao cho số phức \(w=\dfrac{1}{|z|-z}\) có phần thực bằng \(\dfrac{1}{8}\). Xét các số phức \(z_1, z_2 \in S\) thỏa mãn \(\left|z_1-z_2\right|=2\), giá trị lớn nhất của \(P=\left|z_1-5 i\right|^2-\left|z_2-5 i\right|^2\) bằng
Cho hình trụ có bán kính đáy r và độ dài đường sinh l. Diện tích xung quanh \(S_{\rm x q}\) của hình trụ đã cho được tính theo công thức nào dưới đây?
Cho khối chóp đều S.ABCD có AC=4a, hai mặt phẳng (SAB) và (SCD) cùng vuông góc với nhau. Thể tích khối chóp đã cho bằng
Cho hàm số \(y=f(x)\) có đạo hàm là \(f'(x)=x^2+10 x, \forall x \in \mathbb{R}\). Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left(x^4-8 x^2+m\right)\) có đúng 9 điểm cực trị?
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Thể tích V của khối cầu bán kính r được tính theo công thức nào dưới đây?
Trong không gian Oxyz, cho ba điểm A(2;-2; 3), B(1; 3; 4), C(3;-1; 5). Đường thẳng đi qua A và song song với BC có phương trình là
Trong không gian Oxyz, cho hai vectơ \(\vec{u}=(1; 3;-2)\) và \(\vec{v}=(2; 1;-1)\). Tọa độ của vectơ \(\vec{u}-\vec{v}\) là
Với n là số nguyên dương, công thức nào dưới đây đúng?


