Tìm số thực dương a để hình phẳng giới hạn bởi hai đồ thị hàm số \(y=\frac{{{x}^{2}}+2ax+3{{a}^{2}}}{1+{{a}^{6}}}\) và \(y=\frac{{{a}^{2}}-ax}{1+{{a}^{6}}}\) có diện tích đạt giá trị lớn nhất.
A. 2
B. \(\frac{1}{\sqrt[3]{2}}\).
C. 1
D. \(\sqrt[3]{3}\).
Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm của 2 hàm số là: \(\frac{{{x}^{2}}+2ax+3{{a}^{2}}}{1+{{a}^{6}}}=\frac{{{a}^{2}}-ax}{1+{{a}^{6}}}\)
\( \Leftrightarrow {x^2} + 3ax + 2{a^2} = 0 \Leftrightarrow \left[ \begin{array}{l} x = - a\\ x = - 2a \end{array} \right.\)
Vậy diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số là:
\(S=\left| \int\limits_{-2a}^{-a}{\frac{{{x}^{2}}+3ax+2{{a}^{2}}}{1+{{a}^{6}}}dx} \right|=\left| \frac{1}{1+{{a}^{6}}}\left( \frac{{{x}^{3}}}{3}+\frac{3}{2}a{{x}^{2}}+2{{a}^{2}}x \right)\left| \begin{align} & -a \\ & -2a \\ \end{align} \right. \right|\)
\(=\left| \frac{1}{1+{{a}^{6}}}\left( -\frac{{{a}^{3}}}{3}+\frac{3}{2}{{a}^{3}}-2{{a}^{3}}+\frac{8}{3}{{a}^{3}}-6{{a}^{3}}+4{{a}^{3}} \right) \right|\)
=\(\frac{\left| {{a}^{3}} \right|}{6\left( 1+{{a}^{6}} \right)}\,\,\,\overset{Cauchy}{\mathop{\le }}\,\,\,\,\frac{\left| {{a}^{3}} \right|}{12\left| {{a}^{3}} \right|}=\frac{1}{12}\) .
Dấu \(''=''\Leftrightarrow {{a}^{6}}=1\Leftrightarrow a=1\) ,vì a>0.
Vậy diện tích S đạt giá trị lớn nhất là \(\frac{1}{12}\) , khi a=1 .
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Với \(\alpha \) là một số thực bất kỳ, mệnh đề nào sau đây sai?
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Tìm giá trị lớn nhất (max) và giá trị nhỏ nhất (min) của hàm số \(y=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{3}{2};\,3 \right]\).
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) và thỏa mãn \(2f\left( 3x \right)+3f\left( \frac{2}{x} \right)=-\frac{15x}{2}\), \(\int\limits_{3}^{9}{f\left( x \right)\text{d}x}=k\). Tính \(I=\int\limits_{\frac{1}{2}}^{\frac{3}{2}}{f\left( \frac{1}{x} \right)\text{d}x}\) theo \(k\).
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:
.jpg.png)
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.
Cho lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại B. Biết AB=3cm, \(B{C}'=3\sqrt{2}cm\). Thể tích khối lăng trụ đã cho là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.


