Lời giải của giáo viên
ToanVN.com
ĐK: \(\left\{ \begin{array}{l}
x \ge 3\\
{x^2} + x - m \ne 0
\end{array} \right..\)
Ta có: \(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {x - 3} }}{{{x^2} + x - m}} = 0 \Rightarrow y = 0\) là TCN của đồ thị hàm số.
Đồ thị hàm số chỉ có đúng 2 đường tiệm cận \( \Leftrightarrow \) đồ thị hàm số có đúng 1 tiệm cận đứng.
\( \Leftrightarrow pt{\rm{ }}{{\rm{x}}^2} + x - m = 0\) có nghiệm kép \(x \ge 3\) hoặc có hai nghiệm phân biệt thỏa mãn \({x_1} < 3 \le {x_2}\)
\( \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\Delta = 1 + 4m = 0\\
{3^2} + 3 - m = 0
\end{array} \right.\\
a.f\left( 3 \right) < 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
m = - \frac{1}{4}\\
m = 12
\end{array} \right.\\
{3^2} + 3 - m < 0
\end{array} \right. \Leftrightarrow m > 12.\)
Lại có: \(m \in [ - 2019;2019];m \in Z \Rightarrow m \in \left\{ {13;14;...;2019} \right\}.\)
Như vậy có: 2008 giá trị m thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho lăng trụ đứng tam giác ABC.A'B'C'. Gọi M, N, P, Q là các điểm thuộc các cạnh \(AA',BB',CC',B'C'\) thỏa mãn \(\frac{{AM}}{{AA'}} = \frac{1}{2},\frac{{BN}}{{BB'}} = \frac{1}{3},\frac{{CP}}{{CC'}} = \frac{1}{4},\frac{{C'Q}}{{C'B'}} = \frac{1}{5}.\) Gọi V1, V2 lần lượt là thể tích khối tứ diện MNPQ và khối lăng trụ ABC.A'B'C'. Tính tỷ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB = 2a,AA' = a\sqrt 3 .\) Tính thể tích V của khối lăng trụ ABC.A'B'C' theo a?
Tìm tập nghiệm S của bất phương trình \({\left( {\frac{1}{2}} \right)^{ - {x^2} + 3x}} < \frac{1}{4}\)
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} .\) Tính tổng M + m
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}.\) Biết rằng hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính thể tích V của khối lăng
trụ đó theo a.
Cho đa thức \(f\left( x \right) = {\left( {1 + 3x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\left( {n \in {N^*}} \right).\) Tìm hệ số \(a^3\) biết rằng \({a_1} + 2{a_2} + ... + n{a_n} = 49152n.\)
Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng 80cm, độ dài trục bé bằng 60cm. Tính thể tích V của trống (kết quả làm tròn đến hàng đơn vị)
.png)
Tìm nghiệmcuủa phương trình \({\sin ^4}x - {\cos ^4}x = 0.\)
Tính giới hạn \(L = \lim \frac{{{n^3} - 2n}}{{3{n^2} + n - 2}}.\)
Tìm điều kiện cần và đủ của a, b, c để phương trình \(a\sin x + b\cos x = c\) có nghiệm?
Cho tích phân \(\int\limits_1^2 {\frac{{\ln x}}{{{x^2}}}dx} = \frac{b}{c} + a\ln 2\) với a là số thực, b và c là các số nguyên dương, đồng thời \(\frac{b}{c}\) là phân số tối giản. Tính giá trị của biểu thức \(P = 2a + 3b + c\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng \(a\sqrt 2 .\) Tính khoảng cách từ tâm O của đáy ABCD đến một mặt bên theo a.
Tìm giá trị thực của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại x = 0
Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3 - 4x}}{{x - 2}}\) tại điểm có tung độ \(y = - \frac{7}{3}\)
Tìm họ nguyên hàm của hàm số \(y = {x^2} - {3^x} + \frac{1}{x}.\)


