Lời giải của giáo viên
ToanVN.com
\(\left\{ \begin{array}{l} u = x\\ dv = \cos xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = {\mathop{\rm s}\nolimits} {\rm{inx}} \end{array} \right. \Rightarrow I = x\sin x - \int {\sin {\rm{x}}dx = x{\mathop{\rm sinx}\nolimits} + \cos x + C.} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tham số thực a. Biết phương trình \({e^x} - {e^{ - x}} = 2\cos ax\) có 5 nghiệm thực phân biệt. Hỏi phương trình \({e^x} - {e^{ - x}} = 2\cos ax + 4\) có bao nhiêu nghiệm thực phân biệt?
Cho \(\int\limits_1^2 {f\left( {{x^2} + 1} \right)x\,dx = 2.} \) Khi đó \(I = \int\limits_2^5 {f\left( x \right)dx} \) bằng
Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\) là:
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Tính thể tích khối chóp S.ABC.
Cho hàm số y = f(x) xác định trên \(R\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.
.png)
Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có ba nghiệm thực phân biệt.
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD); M, N là hai điểm nằm trên hai cạnh BC, CD. Đặt \(BM = x,\,\,DN = y\left( {0 < x,y < a} \right).\) Hệ thức liên hệ giữa x và y để hai mặt phẳng (SAM) và (SMN) vuông góc với nhau là:
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {1;2;3} \right).\) Gọi (P) là mặt phẳng đi qua điểm Mvà cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích khối chóp O.ABC.
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Biết thể tích khối chóp S.MNPQ là V, khi đó thể tích của khối chóp S.ABCD là
Xét hàm số f(x)liên tục trên đoạn \(\left[ {0;1} \right]\) và thỏa mãn \(2f\left( x \right) + 3f\left( {1 - x} \right) = \sqrt {1 - {x^2}} .\) Tính \(I = \int\limits_0^1 {f\left( x \right)dx.} \)
Giải phương trình \(2{\sin ^2}x + \sqrt 3 \sin 2x = 3.\)
Cho hàm số \(y = \frac{{x - 2}}{{x + 3}}.\) Tìm khẳng định đúng.
Cho hàm số y = f(x) liên tục trên R Đồ thị của hàm số y = f'(x) như hình bên. Đặt \(g\left( x \right) = 2f\left( x \right) - {\left( {x + 1} \right)^2}.\) Mệnh đề nào dưới đây đúng?
.png)
Cho hàm số \(y = {\left( {\frac{3}{\pi }} \right)^{{x^2} + 2x + 3}}.\) Tìm khẳng định đúng.
Cho \(a,b > 0;\,\,a,b \ne 1\) và x, y là hai số thực dương. Trong các mệnh đề dưới đây, mệnh đề nào sai?
Cho \(\int\limits_0^3 {f\left( x \right)dx = a,\int\limits_2^3 {f\left( x \right)dx = b.} } \) Khi đó \(\int\limits_0^2 {f\left( x \right)dx} \) bằng:


