Câu hỏi Đáp án 3 năm trước 62

Tìm \(m\) để đường thẳng \(y = 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 3}}{{x + 1}}\) tại hai điểm \(M,\;N\) sao cho độ dài \(MN\) nhỏ nhất: 

A.

Đáp án chính xác ✅

B. -1 

C.

D.

Lời giải của giáo viên

verified ToanVN.com

Phương trình hoành độ giao điểm của 2 đồ thị hàm số là:

\(2x + m = \dfrac{{x + 3}}{{x + 1}}\,\,\left( {x \ne  - 1} \right) \Leftrightarrow 2{x^2} + \left( {m + 1} \right)x + m - 3 = 0\;\;\;\left( * \right)\)

Ta có: \(\Delta  = {\left( {m + 1} \right)^2} - 8\left( {m - 3} \right) = {m^2} - 6m + 25 = {\left( {m - 3} \right)^2} + 16 > 0\;\;\forall m\)

\( \Rightarrow \left( * \right)\) luôn có hai nghiệm phân biệt \({x_1},\;{x_2}\)  với mọi \(m.\)

Áp dụng hệ thức Vi-et ta có:\(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{{m + 1}}{2}\\{x_1}{x_2} = \dfrac{{m - 3}}{2}\end{array} \right..\)

Gọi \(M\left( {{x_1};\;2{x_1} + m} \right),\;N\left( {{x_2};\;2{x_2} + m} \right)\) là hai giao điểm của 2 đồ thị hàm số.

Khi đó ta có:

\(\begin{array}{l}M{N^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {2{x_2} - 2{x_1}} \right)^2} = 5{\left( {{x_2} - {x_1}} \right)^2}\\ = 5\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 5\left[ {\dfrac{{{{\left( {m + 1} \right)}^2}}}{4} - 4.\dfrac{{m - 3}}{2}} \right]\\ = \dfrac{5}{4}\left( {{m^2} + 2m + 1 - 8m + 24} \right) = \dfrac{5}{4}\left( {{m^2} - 6m + 25} \right)\\ = \dfrac{5}{4}{\left( {m - 3} \right)^2} + 20 \ge 20\;\;\forall m.\end{array}\)

Dấu “=” xảy ra \( \Leftrightarrow m - 3 = 0 \Leftrightarrow m = 3.\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho các điểm \(A\left( { - 1;2;1} \right),\,\,B\left( {2; - 1;4} \right),\,\,C\left( {1;1;4} \right)\). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABC} \right)\)? 

Xem lời giải » 3 năm trước 75
Câu 2: Trắc nghiệm

Cho tứ diện \(ABCD\) có \(AB = CD = a.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(MN = \dfrac{{\sqrt 3 a}}{2},\) góc giữa đường thẳng\(AB\) và \(CD\) bằng: 

Xem lời giải » 3 năm trước 74
Câu 3: Trắc nghiệm

Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\). Xét các điểm A, B thuộc \(\left( P \right)\) sao cho tiếp tuyến tại A và B của \(\left( P \right)\) vuông góc với nhau, diện tích hình phẳng giới hạn bởi \(\left( P \right)\) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành độ của A và B. Giá trị của \({\left( {{x_1} + {x_2}} \right)^2}\) bằng:

Xem lời giải » 3 năm trước 73
Câu 4: Trắc nghiệm

Cho số phức \(z\) thỏa mãn \(\left( {2 + 3i} \right)z + 4 - 3i = 13 + 4i.\) Mô đun của \(z\) bằng 

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Cho khối nón có chiều cao bằng \(2a\) và bán kính đáy bằng \(a\) . Thể tích của khối nón đã cho bằng 

Xem lời giải » 3 năm trước 70
Câu 6: Trắc nghiệm

Trong không gian \({\rm{Ox}}yz,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng \(\left( P \right):\,2y - 3z + 1 = 0?\) 

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Trong không gian \({\rm{Ox}}yz\) , cho hai điểm \(A\left( {1; - 1;2} \right)\) và \(B\left( {3;3;0} \right)\) . Mặt phẳng trung trực của đường thẳng \(AB\) có phương trình là 

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Hàm số nào dưới đây có đồ thị như hình vẽ? 

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng: 

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Cho \(\left( {{u_n}} \right)\)là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10.\) Công sai của cấp số cộng đã cho bằng 

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Trong không gian \({\rm{Ox}}yz,\) cho hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {0; - 1;1} \right)\) .Trung điểm của đoạn thẳng \(AB\) có tọa độ là: 

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\) . Hệ số góc \(k\) của tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng 1 bằng 

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Trong không gian \(Oxyz,\) điểm nào dưới đây thuộc đường thẳng \(\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 2}}{3}?\) 

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng: 

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Nghiệm của phương trình \({\log _3}\left( {2x - 1} \right) = 2\) là:  

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »