Lời giải của giáo viên
ToanVN.com
\(\int\limits_1^2 {2{x^4}} {\rm{d}}x = 2.\frac{{{x^5}}}{5}\left| {\begin{array}{*{20}{c}} 2\\ 1 \end{array} = \frac{2}{5}.\left( {{2^5} - {1^5}} \right) = \frac{{62}}{5}.} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
.png)
Hàm số đã cho có mấy điểm cực trị?
Giá trị lớn nhất của hàm số \(y = \sqrt {4 - {x^2}} \) là
Phương trình trung tuyến AM của tam giác ABC với \(A(3;1;2),\,B(-3;2;5),C(1;6;-3)\) là
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right)=4x+\sin x\) là
Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm \(A\left( 0;4;3 \right)\) và \(B\left( 3;-2;0 \right)\)?
Cho hàm số \(f(x)={{x}^{3}}-3{{x}^{2}}+1\) và \(g(x)=f\left( \left| f(x) \right|-m \right)\) cùng với x=-1, x=1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y=g(x). Khi đó số điểm cực trị của hàm y=g(x) là
Trong không gian Oxyz, cho hai điểm \(A\left( 0;1;2 \right)\) và \(B\left( \sqrt{3};1;3 \right)\) thoả mãn \(AB\bot BC,AB\bot AD, AD\bot BC\). Gọi (S) là mặt cầu có đường kính AB, đường thẳng CD di động và luôn tiếp xúc với mặt cầu (S). Gọi \(E\in AB,F\in CD\) và EF là đoạn vuông góc chung của AB và CD. Biết rằng đường thẳng \((\Delta )\bot EF;(\Delta )\bot AB\) và \(d\left( A;\left( \Delta \right) \right)=\sqrt{3}\) . Khoảng cách giữa \(\Delta \) và CD lớn nhất bằng
Cho số phức z có điểm biểu diễn trong mặt phẳng tọa độ Oxy là điểm \(M\left( 3;-5 \right)\). Xác định số phức liên hợp \(\bar{z}\) của z.
Hàm số nào dưới đây đồng biến trên khoảng \(\left( -\infty ;+\infty \right)\)?
Cho hình trụ có bán kính đường tròn đáy \(r=5\text{cm}\) và có chiều cao \(h=10\text{cm}\). Diện tích xung quanh của hình trụ bằng
Tính môđun của số phức z biết \(\bar{z}=\left( 4-3i \right)\left( 1+i \right)\).
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
.jpg.png)
Cho hàm số \(f\left( x \right) = x + \sqrt {{x^2} + 1} \) biết \(\int\limits_0^1 {\frac{{f\left( x \right)}}{{f\left( { - x} \right)}}} {\rm{d}}x = a + b\sqrt c \) với \(a,\,b,\,c\) là các số hữu tỷ tối giãn . Tính P = a + b + c
Nghiệm của phương trình \({\log _2}\left( {4x - 3} \right) = 2\) là
Nếu \({\log _7}x = 8{\log _7}a{b^2} - 2{\log _7}{a^3}b\,\,(a,b > 0)\) thì \(x\) bằng :


