Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường: \(y = {x^2} - 4x + 4,\) \(y = 0,\) \(x = 0,\) \(x = 3\) xung quanh trục \(Ox\) là:
A. \(V = \frac{{33\pi }}{5}\)
B. \(V = \frac{{33}}{5}\)
C. \(V = \frac{{29\pi }}{4}\)
D. \(V = \frac{{29}}{4}\)
Lời giải của giáo viên
ToanVN.com
Xét phương trình hoành độ giao điểm: \({x^2} - 4x + 4 = 0 \Leftrightarrow x = 2\).
Thể tích khối tròn xoay khi quay hình giới hạn bởi \(y = {x^2} - 4x + 4,\) \(y = 0,\) \(x = 0,\) \(x = 3\) xung quanh trục \(Ox\) là:
\(\begin{array}{l}V = \pi \int\limits_0^3 {\left| {{{\left( {{x^2} - 4x + 4} \right)}^2}} \right|dx} \\ = \pi \left| {\int\limits_0^2 {{{\left( {{x^2} - 4x + 4} \right)}^2}dx} } \right|\\ + \pi \left| {\int\limits_2^3 {{{\left( {{x^2} - 4x + 4} \right)}^2}dx} } \right|\\ = \frac{{32}}{5}\pi + \frac{1}{5}\pi = \frac{{33\pi }}{5}\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn \(\left| {z + i - 1} \right| = \left| {\overline z - 2i} \right|\) là:
Giá trị \(\int\limits_0^1 {\left( {2x + 2} \right){e^x}dx} \) là:
Diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y = 4 - {x^2}\) và trục hoành là:
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3; - 3;5} \right)\) và đường thẳng:\(\left( d \right):\frac{{x + 2}}{1} = \frac{y}{3} = \frac{{z - 3}}{4}\). Phương trình của đường thẳng qua \(A\) và song song với \(\left( d \right)\) là
Hai điểm biểu diễn số phức \(z = 1 + i\) và \(z' = - 1 + i\) đối xứng nhau qua:
Biết \(\int\limits_1^2 {\frac{{{x^2} + x + 1}}{{x + 1}}dx = a + \ln b} \). Khi đó \(a + b\) bằng.
Trong không gian Oxyz, cho \(A\left( {3;1;2} \right),\) \(B\left( { - 3; - 1;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + 3z - 14 = 0\). Điểm M thuộc mặt phẳng (P) sao cho \(\Delta MAB\) vuông tại M. Tính khoảng cách từ điểm M đến mặt phẳng Oxy.
Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt phẳng \(\left( P \right):2x + y - z - 8 = 0\),\(\left( Q \right):3x + 4y - z - 11 = 0\). Gọi \(\left( d \right)\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\), phương trình của đường thẳng \(\left( d \right)\) là:
Giá trị của \(\int\limits_0^{16} {\frac{{dx}}{{\sqrt {x + 9} - \sqrt x }}} \) là:
Cho \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx} = 12\) và \(f\left( 0 \right) = 3\). Khi đó giá trị \(\int\limits_0^3 {f\left( x \right)dx} \) là:
Trong không gian với hệ tọa độ \(Oxyz\), cho 3 điểm \(A\left( {0;0;3} \right),\) \(B\left( {1;1;3} \right),\) \(C\left( {0;1;1} \right)\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( {ABC} \right)\) bằng:
Rút gọn biểu thức \(M = {i^{2018}} + {i^{2019}}\) ta được:
Trong không gian với hệ tọa độ \(Oxyz\), tâm và bán kính của mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 5 = 0\) là:


