Lời giải của giáo viên
ToanVN.com
Điều kiện: \(5x > 0 \Rightarrow x > 0\)
Ta có: \({\log _5}(5x) - {\log _{25}}(5x) - 3 = 0 \)
\(\Leftrightarrow {\log _5}(5x) - {\log _{{5^2}}}(5x) - 3 = 0\)
\( \Leftrightarrow {\log _5}(5x) - \dfrac{1}{2}{\log _5}(5x) = 3\)
\( \Leftrightarrow \dfrac{1}{2}{\log _5}(5x) = 3 \)
\(\Leftrightarrow {\log _5}\left( {5x} \right) = 6\)
\( \Leftrightarrow 5x = {5^6} \Leftrightarrow x = {5^5}\).
Vậy phương trình đã cho có 1 nghiệm
Chọn đáp án C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình (H) giới hạn bởi đường cong là \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).
Với điểm \(O\) cố định thuộc mặt phẳng \(\left( P \right)\) cho trước, xét đường thẳng \(l\) thay đổi đi qua điểm \(O\) và tạo với mặt phẳng \(\left( P \right)\) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là
Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\), \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì \(k\) bằng
Trong các hàm số cho sau đây, hàm số nào đồng biến trên R ?
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc tiếp tuyến với (C) tại điểm M(- 1 ; 2) bằng:
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
Trên mặt phẳng tọa độ, để tập hợp điểm biểu diễn các số phức z nằm trong phần gạch chéo ( kể cả biên ) ở hình vẽ dưới đây thì điều kiện của z là:
Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
Cho hai điểm \(A,B\) cố định. Tập hợp các điểm \(M\) trong không gian sao cho diện tích tam giác \(MAB\) không đổi là
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC). Tính khoảng cách từ trọng tâm G của tam giác SAB đến (SAC)?
Một chiếc xe ô tô có thùng đựng hàng hình hộp chữ nhật với kích thước 3 chiều lần lượt là 2m; 1,5m; 0,7m. Tính thể tích thùng đựng hàng của xe ôtô đó.


