Lời giải của giáo viên
ToanVN.com
Ta có: \( \Rightarrow y' = 4{x^3} - 6{x^2} + 2x\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = \dfrac{1}{2}\end{array} \right.\)
Bảng xét dấu y’:
Ta thấy: \(y'\) đổi dấu từ dương sang âm tại 1 điểm là \(x = \dfrac{1}{2}\)
Chọn: A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp.
Đường thẳng \(\left( \Delta \right)\) là giao của hai mặt phẳng \(x + z - 5 = 0\) và \(x - 2y - z + 3 = 0\) thì có phương trình là:
Lăng trụ có chiều cao bằng \(a\), đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\). Cạnh góc vuông của đáy lăng trụ bằng
Cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính bằng 2. \(\left( P \right)\) là mặt phẳng cách \(O\) một khoảng bằng 1 và cắt \(\left( S \right)\) theo một đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đáy là \(\left( C \right)\), đỉnh thuộc \(\left( S \right)\), đỉnh cách \(\left( P \right)\) một khoảng lớn hơn \(2\). Kí hiệu \({V_1}\), \({V_2}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right)\). Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) là
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\)và cạnh bên bằng \(2\sqrt 2 \). Gọi \(\alpha \)là góc của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SAB} \right)\). Khi đó \(\cos \alpha \) bằng:
Tập xác định của hàm số \(y = {\left[ {\ln \left( {x - 2} \right)} \right]^\pi }\) là:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx} = 10,\,\,\int\limits_3^4 {f\left( x \right)dx} = 4\). Tích phân \(\int\limits_0^3 {f\left( x \right)dx} \) bằng:
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Số giá trị nguyên của tham số \(m\) nằm trong khoảng \(\left( {0;2020} \right)\) để phương trình \(\left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = 2020 - m\) có nghiệm là
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua tâm của \(\left( {{C_1}} \right)\), đi qua tâm của \(\left( {{C_2}} \right)\) và có các đường tiệm cận tiếp xúc với cả \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Tổng \(a + b + c\) là
Cho hàm số \(y = a{x^4} + b{x^2} + c\) (\(a \ne 0\)) có đồ thị như hình vẽ dưới đây.
Mệnh đề nào dưới đây đúng?
Hàm số \(y = - {x^3} + 3{x^2} - 2\) đồng biến trên khoảng:
Hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và dấu của đạo hàm được cho bởi bảng dưới đây:
Hàm số \(y = f\left( {2x - 2} \right)\) nghịch biến trên khoảng:
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau.
Hàm số \(y = - 2f\left( x \right) + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?


