Ông An xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30m và chiều dài 50m. Để giảm bớt chi phí cho việc trồng cây nhân tạo, ông An chia sân bóng ra làm hai phần (tô đen và không tô đen) như hình bên. Phần tô đen gồm hai miền diện tích bằng nhau và đường cong AIB là một parabol đỉnh I. Phần tô đen được trồng cỏ nhân tạo với giá 130 000 đồng/m2 và phần còn lại được trồng cỏ nhân tạo với giá 90 000 đồng/m2. Hỏi ông An phải trả bao nhiêu tiền để trồng cỏ nhân tạo cho sân bóng?
.png)
A. 151 triệu đồng
B. 165 triệu đồng
C. 195 triệu đồng
D. 143 triệu đồng
Lời giải của giáo viên
ToanVN.com
.png)
Ta gắn hệ trục Oxy như hình vẽ:
Giả sử phương trình đường parabol là: \(y = a{x^2} + bx + c,\,\,\left( {a \ne 0} \right)\)
Ta có: \(\left\{ \begin{array}{l}
c = 0\\
10 = 225a + 15b\\
10 = 225a - 15b
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
c = 0\\
a = \frac{2}{{45}}\\
b = 0
\end{array} \right. \Rightarrow \left( P \right):y = \frac{2}{{45}}{x^2}\)
Diện tích phần sân tô đậm là:
\(S = 2.\int\limits_{ - 15}^{15} {\frac{2}{{45}}{x^2}dx = 2.} \frac{2}{{45}}.\frac{1}{3}{x^3}\left| \begin{array}{l}
^{15}\\
_{ - 15}
\end{array} \right. = \frac{4}{{135}}{x^3}\left| \begin{array}{l}
^{15}\\
_{ - 15}
\end{array} \right. = \frac{4}{{135}}{.15^3}.2 = 200\left( {{m^2}} \right)\)
Diện tích phần còn lại là: \(30.50 - 200 = 1300\left( {{m^2}} \right)\)
Ông An phải trả số tiền là: 200. 130 000+ 1300. 90 000= 26 000 000+ 117 000 000= 143 000 000 (đồng)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối hộp chữ nhật ABCD.A'B'C'D' có \(AB = 3,AC = 5,AA' = 5\)
Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Giá trị cực tiểu của hàm số đã cho bằng
.png)
Xét các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|\) và \(w = iz + 1\). Giá trị nhỏ nhất của \(\left| w \right|\) bằng?
Điểm A trong hình vẽ bên là điểm biểu diễn của số phức z. Khi đó mệnh đề nào sau đây là đúng?
.png)
Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình vẽ bên.
.png)
Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {{x^2} - 2x} \right) = m\) có đúng 4 nghiệm thực phân biệt thuộc đoạn \(\left[ { - \frac{3}{2};\frac{7}{2}} \right]\)?
Người ta xây một bể nước hình trụ (tham khảo hình vẽ bên) có bán kính R = 1m (tính từ tâm bể đến mép ngoài), chiều dày của thành bể là b = 0,05m, chiều cao của bể là h = 1,5 m. Tính dung tích của bể nước (làm tròn đến hai chữ số thập phân).
.png)
Cho hình chóp S.ABC có đáy là tam giác vuông tại B. Biết \(\Delta ABC\) đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích khối chóp S.ABC biết \(AB = a,AC = a\sqrt 3 \)
Cho hàm số \(f(x)\) liên tục trên đoạn [- 1;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là GTLN và GTNN của hàm số đã cho trên [- 1;3]. Giá trị của P = m.M bằng?
.png)
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 2y - z + 4 = 0\) và các điểm \(A\left( {2;1;2} \right),B\left( {3; - 2;2} \right)\). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (P) một góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 1 = 0\) đi qua điểm nào dưới đây?
Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình bên. Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) là
.png)
Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}} = a + b\ln 2 + c\ln 3} \) với a, b, c là các số hữu tỉ. Giá trị của \(a+b+c\) bằng:
Cho Parabol như hình vẽ bên. Diện tích hình phẳng giới hạn bởi Parabol và trục hoành bằng
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):x + 2y + 3z - 6 = 0\) và đường thẳng
\(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}\). Mệnh đề nào sau đây đúng?


