Ông \(A\) dự định sử dụng hết \(5{m^2}\) kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
A. \(0,96{m^3}\)
B. \(1,51{m^3}\)
C. \(1,33{m^3}\)
D. \(1,01{m^3}\)
Lời giải của giáo viên
ToanVN.com
Gọi chều dài, chiều rộng và chiều cao của bể cá lần lượt là \(a;b;c\left( {a;b;c > 0} \right)\)
Theo đề bài ta có \(a = 2b\) .
Vì ông \(A\) sử dụng \(5{m^2}\) kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là \(5\,{m^2}.\)
Hay \(ab + 2bc + 2ac = 5\) mà \(a = 2b\) nên
\(2{b^2} + 2bc + 4bc = 5 \Leftrightarrow 2{b^2} + 6bc = 5 \Rightarrow c = \dfrac{{5 - 2{b^2}}}{{6b}}\)
Thể tích bể cá là \(V = abc = 2b.b.\dfrac{{5 - 2{b^2}}}{{6b}} = \dfrac{{ - 2{b^3} + 5{b}}}{3}\)
Xét hàm số \(f\left( b \right) = \dfrac{{ - 2{b^3} + 5b}}{3}\,\,\,\left( {b > 0} \right) \Rightarrow f'\left( b \right) = \dfrac{{ - 6{b^2} + 5}}{3} = 0 \Rightarrow \left[ \begin{array}{l}b = - \sqrt {\dfrac{5}{6}} \,\,\left( {ktm} \right)\\b = \sqrt {\dfrac{5}{6}} \,\,\left( {tm} \right)\end{array} \right.\) (vì \(b > 0\))
Ta có BBT của \(y = f\left( b \right)\).
Từ BBT suy ra \(\max f\left( b \right) = \dfrac{{5\sqrt {30} }}{{27}} \simeq 1,01 \Leftrightarrow b = \sqrt {\dfrac{5}{6}} \)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông ở \(B.\) \(AH\) là đường cao của \(\Delta SAB.\) Tìm khẳng định sai.
Cho lăng trụ đều \(ABC.EFH\) có tất cả các cạnh bằng \(a\). Gọi \(S\) là điểm đối xứng của \(A\) qua \(BH\). Thể tích khối đa diện \(ABCSFH\) bằng
Cho hình chóp \(S.ABCD\) đều có \(AB = 2\) và \(SA = 3\sqrt 2 .\) Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Thể tích khối lăng trụ có diện tích đáy là \(B\) và chiều cao \(h\) được tính bởi công thức
Trong không gian \(Oxyz\), phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;1; - 3} \right)\), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Trong không gian \(Oxyz\), cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right)\): \(x - 2y - z + 4 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\) có phương trình là
Cho \(k,\,\,n\)\(\,(k < n)\) là các số nguyên dương. Mệnh đề nào sau đây SAI?
Cho phương trình \({2^{2x}} - {5.2^x} + 6 = 0\) có hai nghiệm \({x_1},{x_2}\). Tính \(P = {x_1}.{x_2}\).
Hình nón có diện tích xung quanh bằng \(24\pi \) và bán kính đường tròn đáy bằng \(3\). Đường sinh của hình nón có độ dài bằng:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\sqrt 6 \). Tính thể tích \(V\) của khối chóp \(S.ABCD\).
Cho một hình trụ có chiều cao bằng \(2\) và bán kính đáy bằng \(3\). Thể tích khối trụ đã cho bằng
Cho tứ diện \(ABCD\), gọi \({G_1},\,{G_2}\) lần lượt là trọng tâm các tam giác \(BCD\) và \(ACD\). Mệnh đề nào sau đây SAI?
Cho hàm số \(y = {x^3} - 3x + 1\). Mệnh đề nào sau đây đúng?
Tiếp tuyến với đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) tại điểm có hoành độ bằng \( - 3\) có phương trình là
Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị của hàm số \(y = {x^3} + \left( {m + 2} \right){x^2} + \left( {{m^2} - m - 3} \right)x - {m^2}\) cắt trục hoành tại ba điểm phân biệt?


