Người ta cần đổ một ống cống thoát nước hình trụ với chiều cao 2m, độ dày thành ống là 10m. Đường kính ống là 50m. Tính lượng bê tông cần dùng để làm ra ống thoát nước đó?
A. \(0,18\pi {\rm{ (}}{m^3})\)
B. \(0,045\pi {\rm{ (}}{m^3})\)
C. \(0,5\pi {\rm{ (}}{m^3})\)
D. \(0,08\pi {\rm{ }}({m^3})\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện ABCD có \(AB = 1;AC = 2;AD = 3\) và \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^0}\). Tính thể tích V của khối tứ diện ABCD.
Trong không gian với hệ trục Oxyz, cho hai vectơ \(\overrightarrow u = (1;0; - 3)\) và \(\overrightarrow v = ( - 1; - 2;0)\) . Tính \(\cos (\overrightarrow u ,\overrightarrow v )\) .
Cho hình lăng trụ đều ABC.A'B'C'. Biết khoảng cách từ điểm C đến mặt phẳng (ABC') bằng \(a\), góc giữa hai mặt phẳng (ABC') và (BCC'B') bằng \(\alpha \) với \(\cos \alpha = \frac{1}{{2\sqrt 3 }}\). Tính thể tích khối lăng trụ ABC.A'B'C'.
Trong không gian Oxyz, cho hai điểm \(M(2;2;1)\), \(N\left( { - \frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\). Tìm tọa độ tâm đường tròn nội tiếp tam giác OMN .
Gọi \(M, m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = x + {\cos ^2}x\) trên \(\left[ {0;\frac{\pi }{4}} \right]\). Tính \(S = M + m\).
Cho hàm số \(y = {x^3} - 3{x^2} + 6x + 1\) có đồ thị (C). Tiếp tuyến của (C) có hệ số góc nhỏ nhất là bao nhiêu?
Trong không gian Oxyz, cho hai điểm \(B(0;3;1),C( - 3;6;4)\). Gọi M là điểm nằm trên đoạn BC sao cho \(MC = 2MB\). Tính tọa độ điểm M.
Cho phương trình \({4^{{x^2} - 2x + 1}} - m{.2^{{x^2} - 2x + 2}} + 3m - 2 = 0\). Tìm tất cả giá trị của tham số m để phương trình có 4 nghiệm phân biệt.
Tính đạo hàm của hàm số \(y = \frac{{x + 1}}{{{4^x}}}\)
Cho \(f(x) = 1 + m{x^2},(m \ne 0)\). Tìm tổng tất cả các giá trị nguyên của tham số m thuộc \({\rm{[}} - 2019;2019]\) để phương trình \(f\left( {f(x)} \right) = x\) có 4 nghiệm thực phân biệt.
Tính diện tích S của mặt cầu có bán kính bằng \(2a\).
Tìm giá trị lớn nhất M của hàm số \(y = \frac{1}{3}{x^3} - {x^2} + x - \frac{4}{3}\) trên [-1;1] .
Hàm số \(y = {x^4} - 3{x^2} + 2\) có bao nhiêu điểm cực trị ?
Cho hàm số \(y = \frac{{2x - 1}}{{x - 1}}\) có đồ thị (C). Có bao nhiêu tiếp tuyến của (C) cắt trục Ox, Oy lần lượt tại hai điểm A và B thỏa mãn điều kiện \(OA = 4OB\) .


