Một xưởng sản xuất cần làm 100 chiếc hộp inox bằng nhau, hình dạng là hình hộp chữ nhật có đáy là hình vuông (họp không có nắp), với thể tích là \(108d{m^3}/1\) hộp. Giá inox là 47.000 đồng/1dm2 . Hãy tính toán sao cho tổng tiền chi phí cho 100 chiếc hộp là ít nhất, và số tiền tối thiểu đó là bao nhiêu (nếu chỉ tính số inox vừa đủ để sản xuất 100 chiếc hộp, không có phần dư thừa, cắt bỏ)?
A. 1.692.000.000 đồng.
B. 507.666.000 đồng.
C. 1.015.200.000 đồng.
D. 235.800.000 đồng.
Lời giải của giáo viên
ToanVN.com
Gọi độ dài cạnh đáy của hộp là x(dm). Chiều cao của hộp là \(\frac{{108}}{{{x^2}}}\left( {dm} \right)\)
=> Số inox cần thiết để làm 1 hộp là: \(S = {x^2} + 4x.h = {x^2} + \frac{{432}}{x}\left( {d{m^2}} \right)\)
Tồng số tiền chi phí cho 100 chiếc hộp là \(T = 47.000 \times 100 \times S = 4.700.000 \times \left( {{x^2} + \frac{{432}}{x}} \right)\)
Ta có \(T' = 4.700.000 \times \left( {2x - \frac{{432}}{{{x^2}}}} \right)\)
\(T' = 0 \Leftrightarrow x = 6\)
.png)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các mệnh đề sau, mệnh đề nào đúng?
.png)
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\) (với m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Trung điểm các cạnh của hình tứ diện đều là đỉnh của hình:
Cho hàm số y = f(x) có đạo hàm liên tục trên R, hàm số y = f'(x) có đồ thị hàm số như hình dưới đây:
.png)
Hàm số y = f(x) đồng biến trên khoảng nào trong các khoảng sau:
Cho hàm số \(y = \frac{{8x - 5}}{{x + 3}}\) . Kết luận nào sau đây là đúng ?
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị như hình vẽ:
.png)
Số nghiệm của phương trình \(3f(x + 2) - 4 = 0\) trên đoạn [-2; 2] là?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SC vuông góc với mặt phẳng \(\left( {ABC} \right),SC = a\). Thể tích khối chóp S.ABC bằng:
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D, AB = AD = a CD = 2a Hình chiếu của S lên mặt phẳng (ABCD) trùng với trung điểm của BD. Biết thể tích tứ diện SBCD bằng \(\frac{{{a^3}}}{{\sqrt 6 }}\). Tính khoảng cách từ A đến mặt phẳng (SBC) là:
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f’(x) như hình vẽ. Khẳng định sau đây là sai?
.png)
Với giá trị nào của tham số m để đồ thị hàm số \(y = x - \sqrt {m{x^2} - 3x + 7} \) có tiệm cận ngang.
Bảng biến thiên sau là bảng biến thiên của hàm số nào sau đây?
.png)
Hàm số \(y = {x^3} - (m + 2)x + m\) đạt cực tiểu tại x = 1 khi:
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}.\) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1;0) là:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
.png)
Đồ thị hàm số y = |f(x)| có bao nhiêu điểm cực trị?
Hình lăng trụ có thể có số cạnh là số nào sau đây?


