Một vật chuyển động trong 4 giờ với vận tốc v (mk/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(1;3) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 4 giờ kể từ lúc xuất phát.
.png)
A. \(s = \frac{{50}}{3}\,\,({\rm{km}}).\)
B. \(s = 10\,({\rm{km}}).\)
C. \(s = 20\,({\rm{km}}).\)
D. \(s = \frac{{64}}{3}\,\,({\rm{km}}).\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ toạ độ Oxy, cho điểm \(M\left( {1;\, - 3;\,4} \right)\), đường thẳng \(d:\frac{{x + 2}}{3} = \frac{{y - 5}}{{ - 5}} = \frac{{z - 2}}{{ - 1}}\) và mặt phẳng \((P): 2x + z - 2 = 0\). Viết phương trình đường thẳng \(\Delta \) qua M vuông góc với d và song song với (P).
Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây ?
.png)
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,b,c,d \in R} \right)\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số đã cho có thể là hàm số nào trong các hàm số dưới đây?
.png)
Tập hợp tất cả các điểm biểu diễn các số phức \(z\) thỏa mãn \(\left| {\overline z + 2 - i} \right| = 4\) là đường tròn có tâm I và bán kính R lần lượt là
Cho hình phẳng (H) giới hạn bởi đồ thị \(y = 2x - {x^2}\) và trục hoành. Tính thể tích V vật thể tròn xoay sinh ra khi cho (H) quay quanh Ox.
Cho hàm số \(f(x)\) liên tục trên R và \(f\left( 3 \right) = 21\), \(\int\limits_0^3 {f\left( x \right){\rm{d}}x} = 9\). Tính tích phân \(I = \int\limits_0^1 {x.f'\left( {3x} \right){\rm{d}}x} \).
Tính thể tích của khối nón có chiều cao bằng 4 và độ dài đường sinh bằng 5.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;\,2;\, - 1} \right)\). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.
Một cái trục lăn sơn nước có dạng một hình trụ. Đường kính của đường tròn đáy là 5 cm, chiều dài lăn là 23 cm (hình bên). Sau khi lăn trọn 10 vòng thì trục lăn tạo nên tường phẳng lớp sơn có diện tích là
.png)
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(4{\cos ^3}x - \cos 2x + \left( {m - 3} \right)\cos x - 1 = 0\) có đúng bốn nghiệm khác nhau thuộc khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ
.png)
Đặt \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\). Tìm mệnh đề đúng trong các mệnh đề sau:
Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình \(3{z^2} - z + 2 = 0\). Tính \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\).


