Một tàu vũ trụ được cung cấp bởi một nguồn điện đồng vị phóng xạ plutoni-238. Công xuất đầu ra của nguồn điện này được ước lượng bởi công thức \(P\left( t \right) = 870.\,{e^{ - \frac{t}{{127}}}}\) (W) trong đó t là số năm kể từ khi con tàu hoạt động. Biết rằng để các thiết bị hoạt động bình thường, nguồn cung cấp công suất tối thiểu là 600W. Hỏi con tàu đủ điện để các thiết bịhoạt động bình thường trong bao lâu ?
A. 45 năm
B. 47 năm
C. 48 năm
D. 50 năm
Lời giải của giáo viên
ToanVN.com
Con tàu hoạt động bình thường khi
\(870.\,{e^{ - \frac{t}{{127}}}} > 600 \Leftrightarrow t < - 127.\ln \left( {\frac{{60}}{{87}}} \right) \approx 47,1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi z0 là nghiệm phức có phần ảo âm của phương trình \(2{z^2} - 2z + 13 = 0\). Tìm môđun của số phức \(\left( {5 + i} \right){z_0}\)
Có bao nhiêu số nguyên m để hàm số \(y = - \frac{2}{3}{x^3} + \left( {m - 1} \right){x^2} - 8x + 4\) nghịch biến trên tập xác định ?
Cho hàm số y = f(x) có bảng xét dấu của f'(x) sau:
Số điểm cực tiểu của hàm số đã cho là
Nếu hàm số F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b] thì tích phân \(\int\limits_a^b {f\left( x \right){\rm{d}}x} \) bằng
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), ABCD là hình chữ nhật, \(SA = AB = a,AD = a\sqrt 2 \) (minh họa như hình dưới đây)
.png)
Góc giữa đường thẳng SC với mặt phẳng (ABCD) bằng
Cho các số thực dương x, y thỏa mãn \({\log _3}\left( {\frac{{1 - y}}{{x + 3xy}}} \right) = 3xy + x + 3y - 4\). Tìm giá trị nhỏ nhất của x + y
Số giao điểm của đồ thị hàm số \(y = - 2{x^3} + 3x\) với đường thẳng y = 1 ?
Trên mặt phẳng tọa độ, M(-1;3) là điểm biểu diễn số phức nào ?
Trong không gian Oxyz điểm nào sau đây không thuộc đường thẳng \(\Delta :\left\{ \begin{array}{l} x = 3 - 2t\\ y = 1 + t\\ z = - 2 + t \end{array} \right.\)?
Cho các số phức \({z_1} = 8 + mi\,\,\left( {m \in Z} \right)\) và \({z_2} = 1 + 2i\). Biết \(\frac{{{z_1}}}{{{z_2}}}\) là số thuần ảo, m thuộc khoảng nào cho sau đây ?
Thể tích khối lập phương bằng 8a3. Độ dài cạnh của khối lập phương đã cho là
Trong không gian Oxyz cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 6y + 4z + 5 = 0\). Bán kính của mặt cầu đã cho là
Cho số thực k thỏa mãn \(\int\limits_0^1 {x{e^{{x^2} + k}}{\rm{d}}x = 3} \). Số ki thuộc khoảng nào sau đây ?
Cho cấp số cấp số cộng (un) với u1 = -3 công sai d = 2. Tìm số hạng u5


