Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN,PQ của hai đáy sao cho \(MN\bot PQ.\) Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M,N,P,Q để thu được khối đá có hình tứ diện MNPQ. Biết rằng MN=60 cm và thể tích khối tứ diện MNPQ bằng \(36d{{m}^{3}}.\) Tìm thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân).
A. \(133,6d{m^3}\)
B. \(113,6d{m^3}\)
C. \(143,6d{m^3}\)
D. \(123,6d{m^3}\)
Lời giải của giáo viên
ToanVN.com
Dựng hình lăng trụ MP'NQ'.M'PN'Q (như hình vẽ)
Khi đó, ta có
\({V_{MNPQ}} = {V_{MP'NQ'.M'PN'Q}} - \left( {{V_{P.MNP'}} + {V_{Q.MNQ'}} + {V_{M.M'PQ}} + {V_{N.N'PQ}}} \right) = {V_{MP'NQ'.N'PN'Q}} - 4.{V_{P.MNP'}}\)
\(\begin{array}{l} = {V_{MP'NQ'.PN'Q}} - 4.\frac{1}{2}{V_{P.MQ'NP'}} = {V_{MP'NQ'.M'PN'Q}} - 2{V_{P.MQ'NP'}}\\ = {V_{MP'NQ'.PN'Q}} - 2.\frac{1}{3}{V_{MP'NQ'.PN'Q}}\\ = \frac{1}{3}{V_{MP'NQ'.PN'Q}}. \end{array}\)
\( \Rightarrow \frac{1}{3}{V_{MP'NQ'.PN'Q}} = 36(d{m^3}) \Leftrightarrow {V_{MP'NQ'.PN'Q}} = 108\left( {d{m^3}} \right)\)
Do \(MN \bot PQ,PQ//P'Q'\) nên \(MN \bot P'Q' \Rightarrow MP'NQ'\) là hình vuông
Ta có \(MN = 60cm \Rightarrow \left\{ \begin{array}{l} MQ = \frac{{60}}{{\sqrt 2 }} = 30\sqrt 2 (cm) = 3\sqrt 2 (dm)\\ OM = \frac{{60}}{2} = 30(cm) = 3(dm) \end{array} \right.\)
\( \Rightarrow {S_{MP'NQ'}} = {\left( {3\sqrt 2 } \right)^2} = 18(d{m^2})\)
\({V_{MP'NQ'.PN'Q}} = {S_{MP'NQ'}}.h \Rightarrow 18h = 108 \Leftrightarrow h = 6(dm)\)
Thể tích khối trụ là \(V = \pi {R^2}h = \pi .O{M^2}h = \pi {.3^2}.6 = 54\pi (d{m^3})\)
Thể tích của lượng đá bị cắt bỏ là \(54\pi - 36 \approx 133,6\left( {d{m^3}} \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-2{{x}^{2}}+x-12\) và trục Ox là
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho \(\int\limits_{0}^{2}{f\left( x \right)\text{d}x=5}\). Tính tích phân \(I=\int\limits_{0}^{2}{\left[ {{x}^{2}}+2f\left( x \right) \right]\text{d}x}\).
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
.jpg.png)
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
.jpg.png)
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( \frac{3}{a} \right)\) bằng:
Trong không gian với hệ trục tọa độ Oxyz. Hãy viết phương trình mặt cầu có tâm \(I\left( 2\,;\,2\,;\,3 \right)\) và tiếp xúc với mặt phẳng \(\left( Oxz \right)\).
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng
Nghiệm của phương trình \({3^{{x^2} - 3x + 1}} = \frac{1}{3}\) là:


