Một hình trụ có bán kính đáy r = 5cm và khoảng cách giữa hai đáy h = 7cm . Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 3cm. Diện tích của thiết diện được tạo thành là:
A. \(S = 56 ( cm^2)\)
B. \(S=55(cm^2)\)
C. \(S= 53(cm^2)\)
D. \(S=46(cm^2)\)
Lời giải của giáo viên
ToanVN.com
Gọi O;O' là tâm của hai đáy của hình trụ và (P) là mặt phẳng song song với trục và cách trục một khoảng 3cm.
Mp(P) cắt hai hình tròn đáy (O);(O') theo hai dây cung lần lượt là AB và CD cắt mặt xung quanh theo hai đường sinh là AD,BC. Khi đó ABCD là hình chữ nhật.
.png)
Gọi H là trung điểm của AB. Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadI % eacqGHLkIxcaWGbbGaamOqaiaacUdacaWGpbGaamisaiabgwQiEjaa % dgeacaWGebGaeyO0H4Taam4taiaadIeacqGHLkIxdaqadaqaaiaadg % eacaWGcbGaam4qaiaadseaaiaawIcacaGLPaaaaaa!4AC9! OH \bot AB;OH \bot AD \Rightarrow OH \bot \left( {ABCD} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % izamaabmaabaGaam4taiaaykW7ceWGpbGbauaacaGGSaWaaeWaaeaa % caWGqbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0Jaamizam % aabmaabaGaam4taiaacYcadaqadaqaaiaadgeacaWGcbGaam4qaiaa % dseaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaWGpbGaam % isaiabg2da9iaaiodacaqGJbGaaeyBaaaa!50F3! \Rightarrow d\left( {O\,O',\left( P \right)} \right) = d\left( {O,\left( {ABCD} \right)} \right) = OH = 3{\rm{cm}}\)
Khi đó:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaamyqaiaadIeacqGH9aqpcaaIYaWaaOaaaeaa % caWGpbGaamyqamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaad+eaca % WGibWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH9aqpcaaIYaWaaOaa % aeaacaaI1aWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG4mamaaCa % aaleqabaGaaGOmaaaaaeqaaOGaeyypa0JaaGioaaaa!4A9F! AB = 2AH = 2\sqrt {O{A^2} - O{H^2}} = 2\sqrt {{5^2} - {3^2}} = 8\);\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaads % eacqGH9aqpcaWGpbGaaGPaVlaad+eacaGGNaGaeyypa0JaamiAaiab % g2da9iaaiEdacaqGJbGaaeyBaaaa!41F7! AD = O\,O' = h = 7{\rm{cm}}\)
Diện tích hình chữ nhật ABCD là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaWGbbGaamOqaiaadoeacaWGebaabeaakiabg2da9iaadgea % caWGcbGaaiOlaiaadgeacaWGebGaeyypa0JaaGynaiaaiAdadaqada % qaaiaadogacaWGTbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzk % aaaaaa!45CF! {S_{ABCD}} = AB.AD = 56\left( {c{m^2}} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maabmaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikda % aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca % aIXaaaaa!3FAB! y = {\left( {4 - {x^2}} \right)^2} + 1\) có giá trị lớn nhất trên đoạn \([-1; 1]\) là:
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
.png)
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Số nghiệm thực của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCa % aaleqabaGaamiEaaaakiabgkHiTiaaikdadaahaaWcbeqaaiaadIha % cqGHRaWkcaaIYaaaaOGaey4kaSIaaG4maiabg2da9iaaicdaaaa!3FBF! {4^x} - {2^{x + 2}} + 3 = 0\) là:
Biết rằng hệ số của \(x^4\) trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaeyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaamOB % aaaakiaacYcacaaMc8+aaeWaaeaacaWGUbGaeyicI4SaeSyfHu6aaW % baaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa!43D8! {\left( {2 - x} \right)^n},\,\left( {n \in {N^*}} \right)\) bằng 60 Tìm n.
Cho hình chóp tam giác đều có cạnh đáy bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI2aaaleqaaaaa!36CE! \sqrt 6 \) và chiều cao h = 1. Diện tích của mặt cầu ngoại tiếp của hình chóp đó là:
Đồ thị hàm số nào sau đây nằm phía dưới trục hoành?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực R ?
Tìm số hạng không chứa x trong khai triển nhị thức Newton \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyOeI0YaaSaaaeaacaaIYaaabaGaamiEamaaCaaaleqabaGa % aGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaaIXa % aaaaaa!3DC6! {\left( {x - \frac{2}{{{x^2}}}} \right)^{21}}\), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaeyiyIKRaaGimaiaacYcacaaMc8UaaGPaVlaad6gacqGHiiIZ % cqWIvesPdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaaaaa!4388! \left( {x \ne 0,\,\,n \in {N^*}} \right)\).
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGim % aiaaiodacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakmaabmaaba % GaaGymaiaaiwdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!44C9! G\left( x \right) = 0,035{x^2}\left( {15 - x} \right)\) , trong đó x là liều lượng thuốc được tiêm cho bệnh nhân ( x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
Cho hình nón có góc ở đỉnh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaScaGGSaaaaa!3A09! 60^\circ ,\) diện tích xung quanh bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiabec % 8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaa!3A40! 6\pi {a^2}\). Tính thể tích của khối nón đã cho.
Tổng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGaaG4naaqaaiaa % igdaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaaikdacaaIWaGaaGymai % aaiEdaaeaacaaIZaaaaOGaey4kaSIaam4qamaaDaaaleaacaaIYaGa % aGimaiaaigdacaaI3aaabaGaaGynaaaakiabgUcaRiaac6cacaGGUa % GaaiOlaiabgUcaRiaadoeadaqhaaWcbaGaaGOmaiaaicdacaaIXaGa % aG4naaqaaiaaikdacaaIWaGaaGymaiaaiEdaaaaaaa!5254! T = C_{2017}^1 + C_{2017}^3 + C_{2017}^5 + ... + C_{2017}^{2017}\) bằng:
Cho hàm số \(y = f(x)\) có đạo hàm trên R . Đường cong trong hình vẽ bên là đồ thị hàm số \(y = f'(x)\) , ( \(y = f'(x)\) liên tục trên R ). Xét hàm số .png)
. Mệnh đề nào dưới đây sai?
Tìm tất cả các giá trị thực của tham số m để hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacYgacaGGVbGaai4zamaabmaabaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgkHiTiaaikdacaWGTbGaamiEaiabgUcaRiaaisdaai % aawIcacaGLPaaaaaa!4379! y = \log \left( {{x^2} - 2mx + 4} \right)\) có tập xác định là R .


