Một hình thang cân \(ABCD\) có đáy nhỏ \(AB=1,\) đáy lớn \(CD=3,\) cạnh bên \(BC=AD=\sqrt{2}.\) Cho hình thang \(ABCD\) quay quanh \(AB\) ta được khối nó xoay có thể tích là
A. \(V=\frac{7}{3}\pi \).
B. \(V=2\pi \).
C. \(V=3\pi \).
D. \(V=\frac{8}{3}\pi \).
Lời giải của giáo viên
ToanVN.com
.png)
Khi quay hình thang quanh cạnh \(AB\) ta được khối tròn xoay.
Kẻ các đường cao \(AH,BK.\) Khi đó: \(HK=AB=1\Rightarrow CK=DK=1\)
Áp dụng pitago trong các tam giác vuông \(AHC,BKD\) ta được: \(AH=BK=1\)
Xét khối trụ có đường cao \(CD=3,\) bán kính \(AH=1.\) Khi đó thể tích khối trụ: \({{V}_{\left( T \right)}}=\pi .A{{H}^{2}}.CD=3\pi \)
Xét khối nón có đường sinh \(AD=\sqrt{2},\) bán kính \(AH=1,\) đường cao \(DH=1.\) Khi đó thể tích khối nón \({{V}_{\left( N \right)}}=\frac{1}{3}.\pi .A{{H}^{2}}.DH=\frac{\pi }{3}\)
Thể tích khối tròn xoay: \(V={{V}_{\left( T \right)}}-2{{V}_{\left( N \right)}}=\frac{7\pi }{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right)={{x}^{3}}{{\left( x-1 \right)}^{2}}\left( x+2 \right).\) Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
Tập nghiệm của bất phương trình \({{\log }_{2}}\left( x\sqrt{{{x}^{2}}+2}+4-{{x}^{2}} \right)+2x+\sqrt{{{x}^{2}}+2}\le 1\) là \(\left( -\sqrt{a};-\sqrt{b} \right].\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với cạnh \(AD=2CD.\) Biết hai mặt \(\left( SAC \right),\left( SBD \right)\) cùng vuông góc với mặt đáy và đoạn \(BD=6;\) góc giữa \(\left( SCD \right)\) và mặt đáy bằng \({{60}^{0}}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD=DC=a,AB=2a.\) Hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAD \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({{60}^{0}}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,AB=a\sqrt{3},BC=2a,\) đường thẳng \(AC'\) tạo với mặt phẳng \(\left( BCC'B' \right)\) một góc \({{30}^{0}}.\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.
.png)
Số giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có 3 nghiệm phân biệt là
Cho hàm số \(y=f\left( x \right)\). Đồ thị của hàm số \(y=f'\left( x \right)\) như hình bên.
.jpg.png)
Đặt \(h\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}.\) Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn: \({{f}^{3}}\left( 2-x \right)-2{{f}^{2}}\left( 2+3x \right)+{{x}^{2}}g\left( x \right)+36x=0,\forall x\in \mathbb{R}.\) Tính \(A=3f\left( 2 \right)+4f'\left( 2 \right).\)
Cho parabol \(\left( P \right):y=-{{x}^{2}}\) và đồ thị hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx-2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P=a-3b-5c.\)
.jpg.png)
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right)={{\left( x+1 \right)}^{3}}{{\left( x-2 \right)}^{5}}{{\left( x+3 \right)}^{3}}.\) Số điểm cực trị của hàm số \(f\left( \left| x \right| \right)\) là
Cho hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) có đồ thị như hình vẽ bên.
.jpg.png)
Tìm tất cả các giá trị \(m\) để phương trình \(-{{x}^{4}}+2{{x}^{2}}={{\log }_{2}}m\) có bốn nghiệm thực phân biệt
Cho các số thực dương \(x,y,z\) và thỏa mãn \(x+y+z=3.\) Biểu thức \(P={{x}^{4}}+{{y}^{4}}+8{{z}^{4}}\) đạt GTNN bằng \(\frac{a}{b},\) trong đó \(a,b\) là các số tự nhiên dương, \(\frac{a}{b}\) là phân số tối giản. Tính \(a-b.\)
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right)={{\left( x+2 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( -x+5 \right).\) Số điểm cực trị của hàm số \(y=f\left( x \right)\) là
Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right)?\)
Cho mặt nón tròn xoay đỉnh \(S\) đáy là đường tròn tâm \(O\) có thiết diện qua trục là một tam giác đều cạnh bằng \(a.\text{ }A,B\) là hai điểm bất kì trên đường tròn \(\left( O \right).\) Thể tích khối chóp \(S.OAB\) đạt giá trị lớn nhất bằng


