Câu hỏi Đáp án 3 năm trước 141

Gọi\(S\) là tập hợp các số nguyên \(m\) để hàm số \(y = f(x) = \dfrac{{x + 2m - 3}}{{x - 3m + 2}}\) đồng biến trên khoảng \(\left( { - \infty ; - 14} \right)\). Tính tổng \(T\) của các phần tử trong \(S\)?

A. \(T =  - 10\)   

Đáp án chính xác ✅

B. \(T =  - 9\)  

C. \(T =  - 6\)   

D. \(T =  - 5\) 

Lời giải của giáo viên

verified ToanVN.com

TXĐ : \(D = R\backslash \left\{ {3m - 2} \right\}\).

Ta có: \(y' = \dfrac{{ - 3m + 2 - 2m + 3}}{{{{\left( {x - 3m + 2} \right)}^2}}} = \dfrac{{ - 5m + 5}}{{{{\left( {x - 3m + 2} \right)}^2}}}\).

Để hàm số đã cho đồng biến trên \(\left( { - \infty ; - 14} \right) \Leftrightarrow \left\{ \begin{array}{l} - 5m + 5 > 0\\3m - 2 \ge  - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 1\\m \ge  - 4\end{array} \right. \Leftrightarrow  - 4 \le m < 1\).

\( \Rightarrow S = \left\{ { - 4; - 3; - 2; - 1;0} \right\} \Rightarrow \) Tổng các phần tử của S bằng -10.

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} - x + 3\) tại điểm \(M\left( {1;0} \right)\) là.

Xem lời giải » 3 năm trước 171
Câu 2: Trắc nghiệm

Gọi \(\left( {x;y} \right)\) là nghiệm dương của hệ phương trình \(\left\{ \begin{array}{l}\sqrt {x + y}  + \sqrt {x - y}  = 4\\{x^2} + {y^2} = 128\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array} \right.\). Tổng \(x + y\) bằng: 

Xem lời giải » 3 năm trước 168
Câu 3: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số\(y = \dfrac{{{x^2} - 3x + 2}}{{{x^2} - 4}}\) là.

Xem lời giải » 3 năm trước 165
Câu 4: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) có tiệm cận ngang là.

Xem lời giải » 3 năm trước 164
Câu 5: Trắc nghiệm

Hàm số \(y = {x^4} - 8{x^2} - 4\) nghịch biến trên các khoảng.

Xem lời giải » 3 năm trước 164
Câu 6: Trắc nghiệm

Phương trình tiếp tuyến với đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) song song với đường thẳng \(\left( \Delta  \right):\,\,2x + y + 1 = 0\) là.

Xem lời giải » 3 năm trước 164
Câu 7: Trắc nghiệm

Cho hình chóp tam giác \(S.ABC\)với \(ABC\)là tam giác đều cạnh \(a\). \(SA \bot (ABC)\) và \(SA = a\sqrt 3 .\) Tính thể tích của khối chóp \(S.ABC\).

Xem lời giải » 3 năm trước 162
Câu 8: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng.

Xem lời giải » 3 năm trước 160
Câu 9: Trắc nghiệm

Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Các điểm E  và \(F\) lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi \({V_1}\) là thể tích khối chứa điểm A’ và \({V_2}\) là thể tích khối chứa điểm C’. Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) là.

Xem lời giải » 3 năm trước 160
Câu 10: Trắc nghiệm

Đồ thị sau đây là của hàm số nào ?

Xem lời giải » 3 năm trước 160
Câu 11: Trắc nghiệm

Hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\). Khẳng định nào sau đây đúng.

Xem lời giải » 3 năm trước 159
Câu 12: Trắc nghiệm

Biết \({m_0}\) là giá trị của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx - 1\) có hai điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + x_2^2 - {x_1}{x_2} = 13\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 159
Câu 13: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,{\rm{ }}AD = 2a\), \(SA\) vuông góc với mặt phẳng\(\left( {ABCD} \right)\), \(SA = a\sqrt 3 \). Thể tích của khối chóp \(S.ABCD\) là.

Xem lời giải » 3 năm trước 159
Câu 14: Trắc nghiệm

Gieo một con súc sắc cân đối, đồng chất một lần. Xác suất để xuất hiện mặt chẵn?

Xem lời giải » 3 năm trước 158
Câu 15: Trắc nghiệm

Điểm cực tiểu của hàm số \(y = {x^3} - 3{x^2} - 9x + 2\). 

Xem lời giải » 3 năm trước 158

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »