Lời giải của giáo viên
ToanVN.com
Tìm m sao cho giá trị nhỏ nhất của hàm số \(y=-\left| {{x}^{3}}-3x+m \right|\) trên đoạn [0; 2] bằng -3
⇔ Tìm m sao cho giá trị lớn nhất của hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn [0; 2] bằng 3.
• Xét hàm số \(f\left( x \right)={{x}^{3}}-3x+m\) liên tục trên đoạn [0; 2]. Ta có \({f}'\left( x \right)=3{{x}^{2}}-3=0 \)
\(\Leftrightarrow \left[ \begin{align} & x=1\left( n \right) \\ & x=-1\left( l \right) \\ \end{align} \right..\)
• Suy ra GTLN và GTNN của \(f\left( x \right)\) thuộc \(\left\{ f\left( 0 \right);f\left( 1 \right);f\left( 2 \right) \right\}=\left\{ m,m-2,m+2 \right\}.\)
• Xét hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn [0; 2] ta được giá trị lớn nhất của hàm số y là \(\underset{x\in \left[ 0;2 \right]}{\mathop{max}}\,y=\left\{ \left| m \right|,\left| m-2 \right|,\left| m+2 \right| \right\}=3.\)
- TH1: \(m\ge 0\Rightarrow \underset{x\in \left[ 0;2 \right]}{\mathop{max}}\,y=m+2=3\Leftrightarrow m=1.\)
- TH2: \(m<0\Rightarrow \underset{x\in \left[ 0;2 \right]}{\mathop{max}}\,y=2-m=3\Leftrightarrow m=-1.\)
• Vậy \(m\in \left\{ -1;1 \right\}\) nên tổng các phần tử của S bằng 0.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt phẳng (P): x + 2y - 5 = 0 nhận vec-tơ nào trong các vec-tơ sau làm vec-tơ pháp tuyến?
Cho khối nón tròn xoay có chiều cao h, đường sinh l và bán kính đường tròn đáy bằng R. Diện tích toàn phần của khối nón là
Một hình trụ có bán kính đáy r = a độ dài đường sinh l = 2a. Diện tích toàn phần của hình trụ này là
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \(\frac{{3R}}{2}.\) Mặt phẳng (a) song song với trục của hình trụ và cách trục một khoảng bằng \(\frac{{R}}{2}.\) Diện tích thiết diện của hình trụ cắt bởi mặt phẳng (a) là
Trong không gian, cho tam giác ABC vuông tại A, AB = a và \(AC = a\sqrt 3 .\) Tính độ dài đường sinh l của hình nón có được khi quay tam giác ABC xung quanh trục AB.
Trong không gian toạ độ Oxyz, cho đường thẳng \(\left( d \right):\frac{{x + 3}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{2}.\) Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với (d) có phương trình là
Cho hàm số f(x) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4}.\) Số điểm cực trị của hàm số là
Trong không gian Oxyz, cho hai điểm \(A\left( {1;0;1} \right),B\left( { - 1;2;1} \right).\) Viết phương trình đường thẳng \(\Delta\) đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).
Xét các số thực a, b thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1.\) Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\)
Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn \(f\left( 1 \right) = 7,\int\limits_0^1 {xf\left( x \right)dx} = 1\). Khi đó \(\int\limits_0^1 {{x^2}f'\left( x \right)dx} \) bằng
Xếp ngẫu nhiên ba người đàn ông, hai người đàn bà và một đứa bé vào ngồi 6 cái ghế xếp thành hàng ngang. Xác suất sao cho đứa bé ngồi giữa hai người đàn bà là bao nhiêu?
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}}\) trên tập hợp \(D = \left( { - \infty ; - 1} \right) \cup \left[ {1;\frac{3}{2}} \right].\) Tính P = M + m.
Tập nghiệm của bất phương trình \({\log _2}x > {\log _2}\left( {8 - x} \right)\) là
Trong không gian với hệ tọa độ Oxyz, tọa độ hình chiếu vuông góc của điểm A(2;-1;0) lên mặt phẳng (P): 3x - 2y + z + 6 = 0 là
Cho (un) là cấp số cộng với công sai d. Biết \({u_5} = 16,{u_7} = 22.\) Tính u1.


