Gọi S là tập hợp tất cả các giá trị của tham số \(m\in \mathbb{Z}\) và bất phương trình \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\) có tập nghiệm chứa đúng hai giá trị nguyên. Tìm tổng các phần tử của tập S.
A. 2
B. 0
C. 3
D. 1
Lời giải của giáo viên
ToanVN.com
Điều kiện xác định của phương trình là \(\left\{ \begin{array}{l} {x^2} - 6x + 12 > 0\\ x + 2 > 0\\ m - 5 > 0\\ m - 5 \ne 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > - 2\\ m > 5\\ m \ne 6 \end{array} \right.\)
Ta có \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\)\(\Leftrightarrow {{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{m-5}}\left( x+2 \right)\) (1)
Khi 5<m<6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12<x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10<0\) \(\Leftrightarrow 2<x<5\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( 2;5 \right)\) có chứa đúng 2 giá trị nguyên.
Nhưng tập tham số m không chứa giá trị nguyên.
Khi m>6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12>x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10>0\) \(\Leftrightarrow \left[ \begin{align} & x<2 \\ & x>5 \\ \end{align} \right.\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( -2;2 \right)\cup \left( 5;+\infty\right)\) có chứa nhiều 2 giá trị nguyên.
Kết luận \(S=\varnothing \). Tổng các phần tử của tập S bằng 0.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Với \(\alpha \) là một số thực bất kỳ, mệnh đề nào sau đây sai?
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là
Tìm giá trị lớn nhất (max) và giá trị nhỏ nhất (min) của hàm số \(y=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{3}{2};\,3 \right]\).
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:
.jpg.png)
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Cho lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại B. Biết AB=3cm, \(B{C}'=3\sqrt{2}cm\). Thể tích khối lăng trụ đã cho là:
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\backslash \left\{ 0 \right\}\) và thỏa mãn \(2f\left( 3x \right)+3f\left( \frac{2}{x} \right)=-\frac{15x}{2}\), \(\int\limits_{3}^{9}{f\left( x \right)\text{d}x}=k\). Tính \(I=\int\limits_{\frac{1}{2}}^{\frac{3}{2}}{f\left( \frac{1}{x} \right)\text{d}x}\) theo \(k\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.


