Lời giải của giáo viên
ToanVN.com
Diện tích hình phẳng giới hạn được xác định bởi công thức:
\(S = \int\limits_0^1 {\left| {\dfrac{{x - 1}}{{x + 1}}} \right|\,dx} = \int\limits_0^1 {\left| {1 - \dfrac{2}{{x + 1}}} \right|\,dx} \)
\(\;\;\;= \left| {x - 2\ln \left| {x + 1} \right|} \right|\left| \begin{array}{l}^1\\_0\end{array} \right.\)
\(\;\;\;= 2\ln 2 - 1 = \ln 4 - 1.\)
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số thực a < b < 0. Mệnh đề nào sau đây sai ?
Cho hàm số y = f(x) có đồ thị như hình vẽ sau:
Tìm số nghiệm thực phân biệt của phương trình f(x) = 1.
Môdun của số phức z khi biết \(\overline z = 3 - 4i\) là:
Hai điểm biểu diễn hai số phức liên hợp sau \(z = 1 + 2i\,,\,\,\overline z = 1 - 2i\) đối xứng nhau qua:
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Cạnh bên SC vuông góc với mặt phẳng đáy và SC = a. Thể tích V của khối chóp S.ABC là:
Điểm M(2 ; - 2) là điểm cực tiểu của đồ thị hàm số nào ?
Ba đoạn thẳng SA, SB, SC đôi một vuông góc với nhau tạo thành một tứ diện SABC với: SA=a, SB=b, SC=c. Bán kính mặt cầu ngoại tiếp tứ diện đó là:
Trong không gian \(Oxyz\), cho điểm \(M\) nằm trên trục \(Ox\) sao cho \(M\) không trùng với gốc tọa độ, khi đó tọa độ điểm \(M\)có dạng
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).
Họ nguyên hàm của hàm số \(f(x) = x\left( {2 + 3{x^2}} \right)\) là:
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z - 2i| = 4\) là:


