Câu hỏi Đáp án 3 năm trước 49

Gọi \(m,n\)  là hai giá trị thực thỏa mãn: giao tuyến của hai mặt phẳng \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) và \(\left( {{Q_m}} \right):x - my + nz + 2 = 0\) vuông góc với mặt phẳng \(\left( \alpha  \right):4x - y - 6z + 3 = 0\). Tính \(m + n\).

A. \(m + n = 3\) 

Đáp án chính xác ✅

B. \(m + n = 2\) 

C. \(m + n = 1\) 

D. \(m + n = 0\) 

Lời giải của giáo viên

verified ToanVN.com

Giao tuyến của \(\left( {{P_m}} \right),\left( {{Q_m}} \right)\) vuông góc với \(\left( \alpha  \right)\) hay \(\left( {{P_m}} \right)\) và \(\left( {{Q_m}} \right)\) đều vuông góc \(\left( \alpha  \right)\).

Do đó \(\overrightarrow {{n_\alpha }} \) có phương vuông góc với \(\overrightarrow {{n_P}} \) và \(\overrightarrow {{n_Q}} \) hay \(\left\{ \begin{array}{l}\overrightarrow {{n_\alpha }} .\overrightarrow {{n_P}}  = 0\\\overrightarrow {{n_\alpha }} .\overrightarrow {{n_Q}}  = 0\end{array} \right.\).

Ta có: \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) có \(\overrightarrow {{n_P}}  = \left( {m;2;n} \right)\)

           \(\left( {{Q_m}} \right):x - my + nz + 2 = 0\) có \(\overrightarrow {{n_Q}}  = \left( {1; - m;n} \right)\)

            \(\left( \alpha  \right):4x - y - 6z + 3 = 0\) có \(\overrightarrow {{n_\alpha }}  = \left( {4; - 1; - 6} \right)\)

Do đó \(\left\{ \begin{array}{l}\overrightarrow {{n_\alpha }} .\overrightarrow {{n_P}}  = 0\\\overrightarrow {{n_\alpha }} .\overrightarrow {{n_Q}}  = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4m + 2.\left( { - 1} \right) + n.\left( { - 6} \right) = 0\\4 + \left( { - 1} \right).\left( { - m} \right) + \left( { - 6} \right).n = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}4m - 6n = 2\\m - 6n =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2\\n = 1\end{array} \right. \Rightarrow m + n = 3\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và  \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\). 

Xem lời giải » 3 năm trước 74
Câu 2: Trắc nghiệm

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\)  đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?

Xem lời giải » 3 năm trước 74
Câu 3: Trắc nghiệm

Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).

Xem lời giải » 3 năm trước 71
Câu 4: Trắc nghiệm

Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành. 

Xem lời giải » 3 năm trước 71
Câu 5: Trắc nghiệm

Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).

Xem lời giải » 3 năm trước 64
Câu 7: Trắc nghiệm

Cho hàm số \(y = {x^3} - 3{x^2} + 4\)  có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta  \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\)  để đường thẳng \(\left( d \right)\)  cắt đồ thị \(\left( C \right)\)  tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\) 

Xem lời giải » 3 năm trước 62
Câu 8: Trắc nghiệm

Cho điểm \(M\left( {1;2;5} \right)\), mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Phương trình mặt phẳng \(\left( P \right)\) là

Xem lời giải » 3 năm trước 62
Câu 9: Trắc nghiệm

Cho ba điểm \(A\left( {2;1; - 1} \right);B\left( { - 1;0;4} \right);C\left( {0; - 2; - 1} \right)\) . Phương trình mặt phẳng đi qua A và vuông góc với BC là

Xem lời giải » 3 năm trước 62
Câu 10: Trắc nghiệm

Cho hình chóp \(S.ABCD\)  có đáy \(ABCD\)  là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\)  vuông góc với \(\left( {ABCD} \right).\)  Tính \(\cos \varphi \)  với \(\varphi \)  là góc tạo bởi \((SAC)\) và \((SCD).\)

Xem lời giải » 3 năm trước 61
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 3\,\,khi\,\,x \ge 1\\5 - x\,\,\,\,khi\,\,\,x < 1\end{array} \right.\). Tính\(I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx}  + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \).

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng

Xem lời giải » 3 năm trước 61
Câu 13: Trắc nghiệm

Nguyên hàm của hàm số \(y = {2^x}\) là:

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Một hình trụ có bán kính đáy bằng chiều cao và bằng \(a.\)  Một hình vuông \(ABCD\) có \(AB;{\rm{ }}CD\) là 2 dây cung của 2 đường tròn đáy và mặt phẳng \((ABCD)\)  không vuông góc với đáy. Diện tích hình vuông đó bằng 

Xem lời giải » 3 năm trước 59

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »