Gọi \(\left( S \right)\) là mặt cầu đi qua \(4\) điểm \(A\left( {2;0;0} \right),B\left( {1;3;0} \right),C\left( { - 1;0;3} \right),D\left( {1;2;3} \right)\). Tính bán kính \(R\) của \(\left( S \right)\).
A. \(R = 2\sqrt 2 \)
B. \(R = \sqrt 6 \)
C. \(R = 3\)
D. \(R = 6\)
Lời giải của giáo viên
ToanVN.com
Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu đi qua bốn điểm \(A\left( {2;0;0} \right),B\left( {1;3;0} \right),C\left( { - 1;0;3} \right),D\left( {1;2;3} \right)\).
Khi đó \(AI = BI = CI = DI \Leftrightarrow \left\{ \begin{array}{l}A{I^2} = B{I^2}\\A{I^2} = C{I^2}\\C{I^2} = D{I^2}\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2} + {c^2}\\{\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 3} \right)^2}\\{\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 3} \right)^2} = {\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 3} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 4a + 4 = - 2a + 1 - 6b + 9\\ - 4a + 4 = 2a + 1 - 6c + 9\\2a + 1 = - 2a + 1 - 4b + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2a + 6b = 6\\ - 6a + 6c = 6\\4a + 4b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 1\\c = 1\end{array} \right.\end{array}\)
Suy ra \(I\left( {0;1;1} \right)\) và \(R = IA = \sqrt {{2^2} + {1^2} + {1^2}} = \sqrt 6 \).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\).
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).
Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành.
Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\)
Cho điểm \(M\left( {1;2;5} \right)\), mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Phương trình mặt phẳng \(\left( P \right)\) là
Cho ba điểm \(A\left( {2;1; - 1} \right);B\left( { - 1;0;4} \right);C\left( {0; - 2; - 1} \right)\) . Phương trình mặt phẳng đi qua A và vuông góc với BC là
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right).\) Tính \(\cos \varphi \) với \(\varphi \) là góc tạo bởi \((SAC)\) và \((SCD).\)
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 3\,\,khi\,\,x \ge 1\\5 - x\,\,\,\,khi\,\,\,x < 1\end{array} \right.\). Tính\(I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx} + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \).
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng
Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), biết \(AB = a,AC = 2a\) và \(A'B = 3a\). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\).


