Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right)\), sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:
A. \(0 < a \le 1.\)
B. a < -2
C. \(a \ge 3.\)
D. 1 < a < 2.
Lời giải của giáo viên
ToanVN.com
\(F\left( x \right) = \int {{x^2}{e^{ax}}dx} .\)
Đặt \(\left\{ \begin{array}{l} u = {x^2}\\ dv = {e^{ax}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2xdx\\ v = \frac{1}{a}{e^{ax}} \end{array} \right..\)
\( \Rightarrow F\left( x \right) = \frac{1}{a}{x^2}{e^{ax}} - \frac{2}{a}\int {x{e^{ax}}dx} = \frac{1}{a}{x^2}{e^{ax}} - \frac{2}{a}.A\,\,\,\left( 1 \right)\)
Xét \(A = \int {x{e^{ax}}dx} .\) Đặt \(\left\{ \begin{array}{l} u = x\\ dv = {e^{ax}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = \frac{1}{a}{e^{ax}} \end{array} \right..\)
\( \Rightarrow A = \frac{1}{a}x{e^{ax}} - \frac{1}{a}\int {{e^{ax}}dx} \,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(F\left( x \right)=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{{{a}^{2}}}x{{e}^{ax}}+\frac{2}{{{a}^{2}}}\int{{{e}^{ax}}dx}=\frac{1}{a}{{x}^{2}}{{e}^{ax}}-\frac{2}{{{a}^{2}}}x{{e}^{ax}}+\frac{2}{{{a}^{3}}}{{e}^{ax}}+C.\)
Mà \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1\Rightarrow \frac{1}{{{a}^{3}}}e-\frac{2}{{{a}^{3}}}e+\frac{2}{{{a}^{3}}}e+C=\frac{2}{{{a}^{3}}}+1+C\)
\(\Rightarrow {{a}^{3}}=e-2\Rightarrow a=\sqrt[3]{e-2}\Rightarrow 0<a\le 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ toạ độ Oxyz, cho điểm \(A\left( 1;-2;1 \right)\) và mặt phẳng (P): x + 2y + 2z – 1 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
Số phức nào sau đây là số đối của số phức z, biết z có phần thực dương thoả mãn \(\left| z \right|=2\) và biểu diễn số phức z thuộc đường thẳng \(y-\sqrt{3}x=0.\)
Cho hai hàm số y = f(x), y = g(x) có đồ thị như sau:
Khi đó tổng số nghiệm của hai phương trình \(f\left( g\left( x \right) \right)=0\) và \(g\left( f\left( x \right) \right)=0\) là
Tìm hệ số của đơn thức \({{a}^{3}}{{b}^{2}}\) trong khai triển nhị thức \({{\left( a+2b \right)}^{5}}.\)
Cho hàm số y = f(x) xác định trên \([0;\,+\infty ),\) liên tục trên khoảng \((0;\,+\infty )\) và có bảng biến thiên như sau:
Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có hai nghiệm \({{x}_{1}},{{x}_{2}}\) thoả mãn \({{x}_{1}}\in \left( 0;2 \right)\) và \({{x}_{2}}\in \left( 2;\,+\infty \right).\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
Cho hàm số y = f(x) có đạo hàm \({f}'\left( x \right)=\left( x-1 \right){{\left( x+1 \right)}^{6}}{{\left( x-2 \right)}^{5}}.\) Hàm số có bao nhiêu điểm cực trị?
Cho hàm số \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;\,+\infty )\) bằng
Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x}{2}=\frac{y-1}{-1}=\frac{z}{2}\) và đường thẳng \(d:\frac{x+2}{-1}=\frac{y-1}{2}=\frac{z+1}{2}.\) Góc giữa d và \(\Delta \) bằng
Cho hàm số y = f(x) có bảng biến thiên
Khẳng định nào sau đây là đúng?
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( P \right):2\left( {{m}^{2}}+m+2 \right)x+\left( {{m}^{2}}-1 \right)y+\left( m+2 \right)z+{{m}^{2}}+m+1=0\) luôn chứa đường thẳng \(\Delta \) cố định khi m thay đổi. Khoảng cách từ gốc toạ độ đến \(\Delta \) là
Đường cong trong hình vẽ là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Nếu \({{\log }_{8}}a+{{\log }_{4}}{{b}^{2}}=5\) và \({{\log }_{4}}{{a}^{2}}+{{\log }_{8}}b=7\) thì giá trị của ab là
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích phân \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}.\)
Nguyên hàm của hàm số \(f\left( x \right)={{3}^{x}}+{{x}^{2}}\) là


