Lời giải của giáo viên
ToanVN.com
Ta có: \(y = 3\left( {1 - 2{{\sin }^2}x} \right) - 4\sin = - 6{\sin ^2} - 4\sin x + 3\)
Đặt \(\sin x = t,t \in \left[ { - 1;1} \right].\)
Khi đó, \(f(t) = - 6{t^2} - 4t + 3,t \in \left[ { - 1;1} \right],\) có \(f'(t) = - 12t - 4 = 0 \Leftrightarrow t = - \frac{1}{3} \in ( - 1,1)\)
\(f( - 1) = 1,f(1) = - 7,f\left( { - \frac{1}{3}} \right) = \frac{{11}}{3} \Rightarrow \min \mathop f\limits_{\left[ { - 1;1} \right]} (t) = \min {\rm{ y = - 7}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các mệnh đề sau, mệnh đề nào đúng?
.png)
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\) (với m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Trung điểm các cạnh của hình tứ diện đều là đỉnh của hình:
Cho hàm số y = f(x) có đạo hàm liên tục trên R, hàm số y = f'(x) có đồ thị hàm số như hình dưới đây:
.png)
Hàm số y = f(x) đồng biến trên khoảng nào trong các khoảng sau:
Cho hàm số \(y = \frac{{8x - 5}}{{x + 3}}\) . Kết luận nào sau đây là đúng ?
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị như hình vẽ:
.png)
Số nghiệm của phương trình \(3f(x + 2) - 4 = 0\) trên đoạn [-2; 2] là?
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D, AB = AD = a CD = 2a Hình chiếu của S lên mặt phẳng (ABCD) trùng với trung điểm của BD. Biết thể tích tứ diện SBCD bằng \(\frac{{{a^3}}}{{\sqrt 6 }}\). Tính khoảng cách từ A đến mặt phẳng (SBC) là:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SC vuông góc với mặt phẳng \(\left( {ABC} \right),SC = a\). Thể tích khối chóp S.ABC bằng:
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f’(x) như hình vẽ. Khẳng định sau đây là sai?
.png)
Với giá trị nào của tham số m để đồ thị hàm số \(y = x - \sqrt {m{x^2} - 3x + 7} \) có tiệm cận ngang.
Hàm số \(y = {x^3} - (m + 2)x + m\) đạt cực tiểu tại x = 1 khi:
Bảng biến thiên sau là bảng biến thiên của hàm số nào sau đây?
.png)
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}.\) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1;0) là:
Hình lăng trụ có thể có số cạnh là số nào sau đây?
Cho hàm số \(y = x - \sin 2x + 3.\)Chọn kết luận đúng.


