Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và SA vuông góc với đáy ABCD. Tính sin\(\alpha \) với \(\alpha \) là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
Cho \(f\left( x \right) = {\left( {{e^x} + {x^3}\cos x} \right)^{2018}}\). Giá trị của \(f''\left( 0 \right)\) là
Cho hàm số bậc ba y = f(x) có đồ thị (C) như hình vẽ, đường thẳng d có phương trình y = x -1. Biết phương trình f(X) = 0 có ba nghiệm \({x_1} < {x_2} < {x_3}\). Giá trị của \({x_1}{x_3}\) bằng
.png)
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên R . Chọn mệnh đề sai trong các mệnh đề sau
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị (C) , đường thẳng \(\left( d \right):y = m\left( {x + 1} \right)\) với m là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7\). Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với \(\Delta \) và \(d\left( {B;\Delta } \right) + d\left( {C,\Delta } \right) = 6\sqrt 5 \)
Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chạm dần đều với vận tốc \(v\left( t \right) = - 2t + 10\left( {m/s} \right)\) , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Cho \(\int\limits_0^4 {f\left( x \right)dx = 2018} \). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2x} \right) + f\left( {4 - 2x} \right)} \right]dx} \)
Cho hình nón có bán kính đáy băng a và độ dài đường sinh băng 2a. Diện tích xung quanh hình nón đó bằng
Cho số thực m > 1 thỏa mãn \(\int\limits_1^m {\left| {2m - 1} \right|} dx = 1\). Khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn [2; -3] bằng
Cho đa giác đều có 2018đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?
Với a là số thực dương bất kỳ, khẳng định nào dưới đây đúng?
Cho điểm M (1; 2; 5), mặt phẳng (P) đi qua điểm M cắt trục tọa độ Ox; Oy; Oz tại A, B, C sao cho M là trực tâm của tam giác ABC. Phương trình mặt phẳng (P) là
.png)


