Lời giải của giáo viên
ToanVN.com
Đặt z=a+bi với \(a,b\in \mathbb{R}\) ta có : \(\left( 1+i \right)z+\overline{z}=\left( 1+i \right)\left( a+bi \right)+a-bi=2a-b+ai\).
Mà \(\left( 1+i \right)z+\overline{z}\) là số thuần ảo nên \(2a-b=0\Leftrightarrow b=2a\).
Mặt khác \(\left| z-2i \right|=1\) nên \({{a}^{2}}+{{\left( b-2 \right)}^{2}}=1\)
\(\Leftrightarrow {{a}^{2}}+{{\left( 2a-2 \right)}^{2}}=1\)
\(\Leftrightarrow 5{{a}^{2}}-8a+3=0\)
\( \Leftrightarrow \left[ \begin{array}{l} a = 1 \Rightarrow b = 2\\ a = \frac{3}{5} \Rightarrow b = \frac{6}{5} \end{array} \right.\)
Vậy có 2 số phức thỏa yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Viết phương trình đường thẳng đi qua hai điểm \(A\left( 1;\,2;\,-3 \right)\) và \(B\left( 3;\,-1;\,1 \right)\)?
Nghiệm của phương trình \({\log _4}\left( {3x - 2} \right) = 2\) là
Cho một cấp số cộng có \({{u}_{4}}=2\), \({{u}_{2}}=4\). Hỏi \({{u}_{1}}\) và công sai d bằng bao nhiêu?
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Trong không gian Oxyz, phương trình mặt cầu tâm \(I\left( -1;\,2;\,0 \right)\) và đi qua điểm \(A\left( 2;\,-2;\,0 \right)\) là
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3{\rm{ }}khi x \ge 1\\ 5 - x{\rm{ khi }}x < 1 \end{array} \right.\). Tính \(I = 2\int_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x} + 3\int_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \)
Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} + \sin x\) là
Đồ thị hàm số \(y=\,-\,{{x}^{4\,}}\,+\,{{x}^{2}}\,+\,2\) cắt trục Oy tại điểm
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y={{x}^{4}}-10{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\) . Tổng M+m bằng:
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z=-1+2i là điểm nào dưới đây?
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc tập hợp P là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{(x-2)}^{2}}+{{(y+4)}^{2}}+{{(z-1)}^{2}}=9.\) Tâm của (S) có tọa độ là


