Câu hỏi Đáp án 3 năm trước 64

Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y={{x}^{3}}-8{{x}^{2}}+\left( {{m}^{2}}+5 \right)x-2{{m}^{2}}+14\) có hai điểm cực trị nằm về hai phía trục \(Ox?\)

A. 6

B. 4

C. 5

D. 7

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Yêu cầu bài toán tương đương đồ thị hàm số \(y={{x}^{3}}-8{{x}^{2}}+\left( {{m}^{2}}+5 \right)x-2{{m}^{2}}+14\) cắt trục hoành tại 3 điểm phân biệt \(\Leftrightarrow {{x}^{3}}-8{{x}^{2}}+\left( {{m}^{2}}+5 \right)x-2{{m}^{2}}+14=0\) có 3 nghiệm phân biệt.

+) \({{x}^{3}}-8{{x}^{2}}+\left( {{m}^{2}}+5 \right)x-2{{m}^{2}}+14=0\)

\(\Leftrightarrow \left( x-2 \right)\left[ \left( x-7 \right)\left( x+1 \right)-{{m}^{2}} \right]=0\)

\( \Leftrightarrow \left[ \begin{array}{l} x = 2\\ {x^2} - 6x - 7 + {m^2} = 0\left( 1 \right) \end{array} \right.\)

\(\Leftrightarrow \left( 1 \right)\) có 2 nghiệm phân biệt \(\left( x\ne 2 \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l} \Delta ' = 9 + 7 - {m^2} > 0\\ {2^2} - 6.2 - 7 + {m^2} \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 < m < 4\\ m \ne \pm \sqrt {15} \end{array} \right. \Rightarrow m \in \left[ { - 3; - 2; - 1;0;1;2;3} \right].\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=\frac{5x+9}{x-1}\) khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 95
Câu 2: Trắc nghiệm

Một lớp có 30 học sinh, trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cứ 4 bạn đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất một cán sự lớp 

Xem lời giải » 3 năm trước 81
Câu 3: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng

 

Xem lời giải » 3 năm trước 80
Câu 4: Trắc nghiệm

Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=4n-3.\) Tìm công sai \(d\) của cấp số cộng.

Xem lời giải » 3 năm trước 77
Câu 5: Trắc nghiệm

Đồ thị hàm số \(y=\frac{\sqrt{3{{x}^{2}}+2}}{\sqrt{2x+1}-x}\) có tất cả bao nhiêu tiệm cận?

Xem lời giải » 3 năm trước 73
Câu 6: Trắc nghiệm

Đặt \(a={{\log }_{3}}4,\) khi đó \({{\log }_{16}}81\) bằng

Xem lời giải » 3 năm trước 73
Câu 7: Trắc nghiệm

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A. \) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( ABC \right)\) trùng với trọng tâm tam giác \(\left( ABC \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{\sqrt{17}}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB<a\sqrt{3}.\) 

Xem lời giải » 3 năm trước 72
Câu 8: Trắc nghiệm

Cho hàm số \(f\left( x \right),\) hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên

Bất phương trình \(f\left( x \right)<2x+m\) (\(m\) là tham số thực) có nghiệm đúng với mọi \(x\in \left( 0;2 \right)\) khi và chỉ khi

Xem lời giải » 3 năm trước 72
Câu 9: Trắc nghiệm

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB=BC=a,AA'=a\sqrt{2},M\) là trung điểm \(BC. \) Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B'C. \) 

Xem lời giải » 3 năm trước 72
Câu 10: Trắc nghiệm

Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ

Khẳng định nào sau đây đúng?

Xem lời giải » 3 năm trước 71
Câu 11: Trắc nghiệm

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác với \(AB=a,AC=2a\) và \(\widehat{BAC}={{120}^{0}},AA'=2a\sqrt{5}.\) Thể tích \(V\) của khối lăng trụ đã cho là 

Xem lời giải » 3 năm trước 71
Câu 12: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{\sin }^{2}}x \right)=m\) có nghiệm

Xem lời giải » 3 năm trước 69
Câu 13: Trắc nghiệm

Cho hình chóp tứ giác đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\) cạnh bên tạo với đáy một góc \({{60}^{0}}.\) Gọi G là trọng tâm của tam giác \(SBD. \) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(A,G\) và song song với \(BD,\) cắt \(SB,SC,SD\) lần lượt tại \(E,M,F.\) Tính thể tích \(V\) của khối chóp \(S.AEMF.\)

Xem lời giải » 3 năm trước 68
Câu 14: Trắc nghiệm

Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là

Xem lời giải » 3 năm trước 68
Câu 15: Trắc nghiệm

Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB=6a,AC=8a,AD=12a,\) với \(a>0,a\in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD. \) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( AEF \right)\) theo \(a.\)

Xem lời giải » 3 năm trước 68

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »