Lời giải của giáo viên
ToanVN.com
Đặt \({{\log }_{3}}\left( x+1 \right)=t\Rightarrow x={{3}^{t}}-1\).
Phương trình trở thành:
\(3\left( {{3}^{2y}}+2y \right)={{3}^{t}}-1+3t-2\Leftrightarrow {{3}^{2y}}+2y={{3}^{t-1}}+\left( t-1 \right)\)
Xét hàm số \(f\left( u \right)={{3}^{u}}+u\Rightarrow {f}'\left( u \right)={{3}^{u}}.\ln 3+1>0\) nên hàm số luôn đồng biến.
Vậy để \(f\left( 2y \right)=f\left( t-1 \right)\Leftrightarrow 2y=t-1\Leftrightarrow 2y+1=t={{\log }_{3}}\left( x+1 \right)\)
\(\Rightarrow 0\le 2y+1\le {{\log }_{3}}3001\Rightarrow 0\le 2y+1\le 6\Rightarrow y=\left\{ 0;1;2 \right\}\)
Với mỗi nghiệm y ta tìm được một nghiệm x tương ứng.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+1}{x-1}\) trên \(\left[ -3;-1 \right]\). Khi đó M.m bằng
Cho hàm số y=f(x) có bảng biến thiên như hình sau
.png)
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Số phức \(z=a+bi\,\,\left( a,b\in \mathbb{R} \right)\) có điểm biểu diễn như hình vẽ bên dưới. Tìm a và b
.jpg.png)
Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{-3}=\frac{z-5}{-1}\) và mặt phẳng \(\left( P \right):3x-3y+2z+6=0\). Mệnh đề nào dưới đây đúng?
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{3}}=-7;\,\,{{u}_{4}}=8\). Hãy chọn mệnh đề đúng
Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
Cho hình lập phương ABCD.A'B'C'D' (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A'D bằng
.png)


