Cho x,y>0 và \(\alpha ,\beta \in \mathbb{R}.\) Khẳng định nào sau đây sai ?
A. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \beta }}.\)
B. \({x^\alpha } + {y^\alpha } = {\left( {x + y} \right)^\alpha }.\)
C. \({x^\alpha }.{x^\beta } = {x^{\alpha + \beta }}.\)
D. \({\left( {xy} \right)^\alpha } = {x^\alpha }.{y^\alpha }.\)
Lời giải của giáo viên
ToanVN.com
Theo tính chất của lũy thừa thì đẳng thức \({x^\alpha } + {y^\alpha } = {\left( {x + y} \right)^\alpha }\) sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z-5}{3}.\) Vectơ sau đây là một vectơ chỉ phương của đường thẳng d?
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị là đường cong trong hình bên.
.jpg.png)
Số nghiệm của phương trình \(f\left( x \right)=-\frac{1}{2}\) là
Trong không gian Oxyz, cho \(\overrightarrow{a}=\left( -2;2;0 \right),\overrightarrow{b}=\left( 2;2;0 \right),\overrightarrow{c}=\left( 2;2;2 \right).\) Giá trị của \(\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\) bằng
Cho khối hộp hình chữ nhật có ba kích thước 2 ;4 ;6. Thể tích của khối hộp đã cho bằng
Cho các số phức \({{z}_{1}}=1+3i,{{z}_{2}}=-5-3i\). Tìm điểm \(M\left( x;y \right)\) biểu diễn số phức \({{z}_{3}}\), biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x-2y+1=0 và mô đun số phức \(\text{w}=3{{z}_{3}}-{{z}_{2}}-2{{z}_{1}}\) đạt giá trị nhỏ nhất.
Tìm đạo hàm của hàm số \(y={{\log }_{7}}x\) với \(\left( x>0 \right).\)
Trog mặt phẳng Oxy, số phức z=-2+4i được biểu diễn bởi điểm nào trong các điểm ở hình vẽ duới đây?
.jpg.png)
Cho \(\int\limits_{0}^{1}{f\left( x \right)dx=2}\) và \(\int\limits_{0}^{1}{g\left( x \right)dx=5}\). Tính \(\int\limits_{0}^{1}{\left( f\left( x \right)-2g\left( x \right) \right)dx}\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{0}^{1}{f\left( x \right)dx}=2;\int\limits_{1}^{3}{f\left( x \right)dx}=6.\) Tính \(I=\int\limits_{0}^{3}{f\left( x \right)dx}\).
Có bao nhiêu bộ \(\left( x;y \right)\) với x,y nguyên và \(1\le x,y\le 2020\) thỏa mãn \(\left( xy+2x+4y+8 \right){{\log }_{3}}\left( \frac{2y}{y+2} \right)\le \left( 2x+3y-xy-6 \right){{\log }_{2}}\left( \frac{2x+1}{x-3} \right)?\)
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z \right|=1.\) Tìm giá trị lớn nhất của biểu thức \(A=\left| z+2 \right|+2\left| z-2 \right|.\)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y+z-5=0\). Điểm nào dưới đây thuộc \(\left( P \right)?\)
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-6z+1=0\). Tọa độ tâm I của mặt cầu là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.jpg.png)


